Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
from datasets import load_dataset
|
4 |
+
import faiss
|
5 |
+
import numpy as np
|
6 |
+
import streamlit as st
|
7 |
+
|
8 |
+
# Load a public legal guidance dataset
|
9 |
+
dataset = load_dataset("lex_glue", "ecthr_a")
|
10 |
+
texts = dataset['train']['text'][:100] # Limiting to 100 samples for efficiency
|
11 |
+
|
12 |
+
# Initialize Sentence-BERT for document encoding and T5 for summarization
|
13 |
+
sbert_model = SentenceTransformer("all-mpnet-base-v2")
|
14 |
+
t5_tokenizer = AutoTokenizer.from_pretrained("t5-small")
|
15 |
+
t5_model = AutoModelForSeq2SeqLM.from_pretrained("t5-small")
|
16 |
+
|
17 |
+
# Encode the legal guidance texts and build FAISS index
|
18 |
+
case_embeddings = sbert_model.encode(texts, convert_to_tensor=True, show_progress_bar=True)
|
19 |
+
index = faiss.IndexFlatL2(case_embeddings.shape[1])
|
20 |
+
index.add(np.array(case_embeddings.cpu()))
|
21 |
+
|
22 |
+
# Function to retrieve similar cases
|
23 |
+
def retrieve_cases(query, top_k=3):
|
24 |
+
query_embedding = sbert_model.encode(query, convert_to_tensor=True)
|
25 |
+
_, indices = index.search(np.array([query_embedding.cpu()]), top_k)
|
26 |
+
return [(texts[i], i) for i in indices[0]]
|
27 |
+
|
28 |
+
# Function to summarize a given text
|
29 |
+
def summarize_text(text):
|
30 |
+
inputs = t5_tokenizer("summarize: " + text, return_tensors="pt", max_length=512, truncation=True)
|
31 |
+
outputs = t5_model.generate(inputs["input_ids"], max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True)
|
32 |
+
return t5_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
33 |
+
|
34 |
+
# Streamlit UI for LawyerGuide App
|
35 |
+
def main():
|
36 |
+
st.title("LawyerGuide App: Legal Guidance for False Accusations")
|
37 |
+
query = st.text_input("Describe your situation or legal concern:")
|
38 |
+
top_k = st.slider("Number of similar cases to retrieve:", 1, 5, 3)
|
39 |
+
|
40 |
+
if st.button("Get Guidance"):
|
41 |
+
results = retrieve_cases(query, top_k=top_k)
|
42 |
+
for i, (case_text, index) in enumerate(results):
|
43 |
+
st.subheader(f"Guidance {i+1}")
|
44 |
+
st.write("Relevant Text:", case_text)
|
45 |
+
summary = summarize_text(case_text)
|
46 |
+
st.write("Summary of Legal Guidance:", summary)
|
47 |
+
|
48 |
+
if __name__ == "__main__":
|
49 |
+
main()
|
50 |
+
|