Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
import pdfplumber
|
4 |
+
from concurrent.futures import ThreadPoolExecutor
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain.vectorstores import FAISS
|
8 |
+
from transformers import pipeline
|
9 |
+
|
10 |
+
# Set up the page configuration
|
11 |
+
st.set_page_config(page_title="RAG-based PDF Chat", layout="centered", page_icon="📄")
|
12 |
+
|
13 |
+
# Load the summarization pipeline model
|
14 |
+
@st.cache_resource
|
15 |
+
def load_summarization_pipeline():
|
16 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
17 |
+
return summarizer
|
18 |
+
|
19 |
+
summarizer = load_summarization_pipeline()
|
20 |
+
|
21 |
+
# Split text into manageable chunks
|
22 |
+
@st.cache_data
|
23 |
+
def get_text_chunks(text):
|
24 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
25 |
+
chunks = text_splitter.split_text(text)
|
26 |
+
return chunks
|
27 |
+
|
28 |
+
# Initialize embedding function
|
29 |
+
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
30 |
+
|
31 |
+
# Create a FAISS vector store with embeddings, checking for empty chunks
|
32 |
+
@st.cache_resource
|
33 |
+
def load_or_create_vector_store(text_chunks):
|
34 |
+
if not text_chunks:
|
35 |
+
st.error("No valid text chunks found to create a vector store. Please check your PDF files.")
|
36 |
+
return None
|
37 |
+
vector_store = FAISS.from_texts(text_chunks, embedding=embedding_function)
|
38 |
+
return vector_store
|
39 |
+
|
40 |
+
# Helper function to process a single PDF
|
41 |
+
def process_single_pdf(file_path):
|
42 |
+
text = ""
|
43 |
+
try:
|
44 |
+
with pdfplumber.open(file_path) as pdf:
|
45 |
+
for page in pdf.pages:
|
46 |
+
page_text = page.extract_text()
|
47 |
+
if page_text:
|
48 |
+
text += page_text
|
49 |
+
except Exception as e:
|
50 |
+
st.error(f"Failed to read PDF: {file_path} - {e}")
|
51 |
+
return text
|
52 |
+
|
53 |
+
# Function to load PDFs with progress display
|
54 |
+
def load_pdfs_with_progress(folder_path):
|
55 |
+
all_text = ""
|
56 |
+
pdf_files = [os.path.join(folder_path, filename) for filename in os.listdir(folder_path) if filename.endswith('.pdf')]
|
57 |
+
num_files = len(pdf_files)
|
58 |
+
|
59 |
+
if num_files == 0:
|
60 |
+
st.error("No PDF files found in the specified folder.")
|
61 |
+
st.session_state['vector_store'] = None
|
62 |
+
st.session_state['loading'] = False
|
63 |
+
return
|
64 |
+
|
65 |
+
# Title for the progress bar
|
66 |
+
st.markdown("### Loading data...")
|
67 |
+
progress_bar = st.progress(0)
|
68 |
+
status_text = st.empty()
|
69 |
+
|
70 |
+
processed_count = 0
|
71 |
+
|
72 |
+
for file_path in pdf_files:
|
73 |
+
result = process_single_pdf(file_path)
|
74 |
+
all_text += result
|
75 |
+
processed_count += 1
|
76 |
+
progress_percentage = int((processed_count / num_files) * 100)
|
77 |
+
progress_bar.progress(processed_count / num_files)
|
78 |
+
status_text.text(f"Loading documents: {progress_percentage}% completed")
|
79 |
+
|
80 |
+
progress_bar.empty() # Remove the progress bar when done
|
81 |
+
status_text.text("Document loading completed!") # Show completion message
|
82 |
+
|
83 |
+
if all_text:
|
84 |
+
text_chunks = get_text_chunks(all_text)
|
85 |
+
vector_store = load_or_create_vector_store(text_chunks)
|
86 |
+
st.session_state['vector_store'] = vector_store
|
87 |
+
else:
|
88 |
+
st.session_state['vector_store'] = None
|
89 |
+
|
90 |
+
st.session_state['loading'] = False # Mark loading as complete
|
91 |
+
|
92 |
+
# Generate summary based on the retrieved text
|
93 |
+
def generate_summary_with_huggingface(query, retrieved_text):
|
94 |
+
summarization_input = f"{query} Related information:{retrieved_text}"
|
95 |
+
max_input_length = 1024
|
96 |
+
summarization_input = summarization_input[:max_input_length]
|
97 |
+
summary = summarizer(summarization_input, max_length=500, min_length=50, do_sample=False)
|
98 |
+
return summary[0]["summary_text"]
|
99 |
+
|
100 |
+
# Generate response for user query
|
101 |
+
def user_input(user_question):
|
102 |
+
vector_store = st.session_state.get('vector_store')
|
103 |
+
if vector_store is None:
|
104 |
+
return "The app is still loading documents or no documents were successfully loaded."
|
105 |
+
docs = vector_store.similarity_search(user_question)
|
106 |
+
context_text = " ".join([doc.page_content for doc in docs])
|
107 |
+
return generate_summary_with_huggingface(user_question, context_text)
|
108 |
+
|
109 |
+
# Main function to run the Streamlit app
|
110 |
+
def main():
|
111 |
+
# Use HTML to style the title with a larger font size
|
112 |
+
st.markdown(
|
113 |
+
"""
|
114 |
+
<h1 style="font-size:30px; text-align: center;">
|
115 |
+
📄 JusticeCompass: Your AI-Powered Legal Navigator for Swift, Accurate Guidance.
|
116 |
+
</h1>
|
117 |
+
""",
|
118 |
+
unsafe_allow_html=True
|
119 |
+
)
|
120 |
+
|
121 |
+
# Start loading documents if not already loaded
|
122 |
+
if 'loading' not in st.session_state or st.session_state['loading']:
|
123 |
+
st.session_state['loading'] = True
|
124 |
+
load_pdfs_with_progress('documents1')
|
125 |
+
|
126 |
+
user_question = st.text_input("Ask a Question:", placeholder="Type your question here...")
|
127 |
+
|
128 |
+
if st.session_state.get('loading', True):
|
129 |
+
st.info("The app is loading documents in the background. You can type your question now and submit once loading is complete.")
|
130 |
+
|
131 |
+
if st.button("Get Response"):
|
132 |
+
if not user_question:
|
133 |
+
st.warning("Please enter a question before submitting.")
|
134 |
+
else:
|
135 |
+
with st.spinner("Generating response..."):
|
136 |
+
answer = user_input(user_question)
|
137 |
+
st.markdown(f"**🤖 AI:** {answer}")
|
138 |
+
|
139 |
+
if __name__ == "__main__":
|
140 |
+
main()
|