|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Main model for using MusicGen. This will combine all the required components |
|
and provide easy access to the generation API. |
|
""" |
|
|
|
import os |
|
import typing as tp |
|
|
|
import torch |
|
|
|
from .encodec import CompressionModel |
|
from .lm import LMModel |
|
from .builders import get_debug_compression_model, get_debug_lm_model |
|
from .loaders import load_compression_model, load_lm_model, HF_MODEL_CHECKPOINTS_MAP |
|
from ..data.audio_utils import convert_audio |
|
from ..modules.conditioners import ConditioningAttributes, WavCondition |
|
from ..utils.autocast import TorchAutocast |
|
|
|
|
|
MelodyList = tp.List[tp.Optional[torch.Tensor]] |
|
MelodyType = tp.Union[torch.Tensor, MelodyList] |
|
|
|
|
|
class MusicGen: |
|
"""MusicGen main model with convenient generation API. |
|
|
|
Args: |
|
name (str): name of the model. |
|
compression_model (CompressionModel): Compression model |
|
used to map audio to invertible discrete representations. |
|
lm (LMModel): Language model over discrete representations. |
|
""" |
|
def __init__(self, name: str, compression_model: CompressionModel, lm: LMModel, |
|
max_duration: float = 30): |
|
self.name = name |
|
self.compression_model = compression_model |
|
self.lm = lm |
|
self.max_duration = max_duration |
|
self.device = next(iter(lm.parameters())).device |
|
self.generation_params: dict = {} |
|
self.set_generation_params(duration=15) |
|
self._progress_callback: tp.Optional[tp.Callable[[int, int], None]] = None |
|
if self.device.type == 'cpu': |
|
self.autocast = TorchAutocast(enabled=False) |
|
else: |
|
self.autocast = TorchAutocast( |
|
enabled=True, device_type=self.device.type, dtype=torch.float16) |
|
|
|
@property |
|
def frame_rate(self) -> int: |
|
"""Roughly the number of AR steps per seconds.""" |
|
return self.compression_model.frame_rate |
|
|
|
@property |
|
def sample_rate(self) -> int: |
|
"""Sample rate of the generated audio.""" |
|
return self.compression_model.sample_rate |
|
|
|
@property |
|
def audio_channels(self) -> int: |
|
"""Audio channels of the generated audio.""" |
|
return self.compression_model.channels |
|
|
|
@staticmethod |
|
def get_pretrained(name: str = 'melody', device=None): |
|
"""Return pretrained model, we provide four models: |
|
- small (300M), text to music, # see: https://huggingface.co/facebook/musicgen-small |
|
- medium (1.5B), text to music, # see: https://huggingface.co/facebook/musicgen-medium |
|
- melody (1.5B) text to music and text+melody to music, # see: https://huggingface.co/facebook/musicgen-melody |
|
- large (3.3B), text to music, # see: https://huggingface.co/facebook/musicgen-large |
|
""" |
|
|
|
if device is None: |
|
if torch.cuda.device_count(): |
|
device = 'cuda' |
|
else: |
|
device = 'cpu' |
|
|
|
if name == 'debug': |
|
|
|
compression_model = get_debug_compression_model(device) |
|
lm = get_debug_lm_model(device) |
|
return MusicGen(name, compression_model, lm) |
|
|
|
if name not in HF_MODEL_CHECKPOINTS_MAP: |
|
if not os.path.isfile(name) and not os.path.isdir(name): |
|
raise ValueError( |
|
f"{name} is not a valid checkpoint name. " |
|
f"Choose one of {', '.join(HF_MODEL_CHECKPOINTS_MAP.keys())}" |
|
) |
|
|
|
cache_dir = os.environ.get('MUSICGEN_ROOT', None) |
|
compression_model = load_compression_model(name, device=device, cache_dir=cache_dir) |
|
lm = load_lm_model(name, device=device, cache_dir=cache_dir) |
|
if name == 'melody': |
|
lm.condition_provider.conditioners['self_wav'].match_len_on_eval = True |
|
|
|
return MusicGen(name, compression_model, lm) |
|
|
|
def set_generation_params(self, use_sampling: bool = True, top_k: int = 250, |
|
top_p: float = 0.0, temperature: float = 1.0, |
|
duration: float = 30.0, cfg_coef: float = 3.0, |
|
two_step_cfg: bool = False, extend_stride: float = 18): |
|
"""Set the generation parameters for MusicGen. |
|
|
|
Args: |
|
use_sampling (bool, optional): Use sampling if True, else do argmax decoding. Defaults to True. |
|
top_k (int, optional): top_k used for sampling. Defaults to 250. |
|
top_p (float, optional): top_p used for sampling, when set to 0 top_k is used. Defaults to 0.0. |
|
temperature (float, optional): Softmax temperature parameter. Defaults to 1.0. |
|
duration (float, optional): Duration of the generated waveform. Defaults to 30.0. |
|
cfg_coef (float, optional): Coefficient used for classifier free guidance. Defaults to 3.0. |
|
two_step_cfg (bool, optional): If True, performs 2 forward for Classifier Free Guidance, |
|
instead of batching together the two. This has some impact on how things |
|
are padded but seems to have little impact in practice. |
|
extend_stride: when doing extended generation (i.e. more than 30 seconds), by how much |
|
should we extend the audio each time. Larger values will mean less context is |
|
preserved, and shorter value will require extra computations. |
|
""" |
|
assert extend_stride < self.max_duration, "Cannot stride by more than max generation duration." |
|
self.extend_stride = extend_stride |
|
self.duration = duration |
|
self.generation_params = { |
|
'use_sampling': use_sampling, |
|
'temp': temperature, |
|
'top_k': top_k, |
|
'top_p': top_p, |
|
'cfg_coef': cfg_coef, |
|
'two_step_cfg': two_step_cfg, |
|
} |
|
|
|
def set_custom_progress_callback(self, progress_callback: tp.Optional[tp.Callable[[int, int], None]] = None): |
|
"""Override the default progress callback.""" |
|
self._progress_callback = progress_callback |
|
|
|
def generate_unconditional(self, num_samples: int, progress: bool = False) -> torch.Tensor: |
|
"""Generate samples in an unconditional manner. |
|
|
|
Args: |
|
num_samples (int): Number of samples to be generated. |
|
progress (bool, optional): Flag to display progress of the generation process. Defaults to False. |
|
""" |
|
descriptions: tp.List[tp.Optional[str]] = [None] * num_samples |
|
attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions, None) |
|
return self._generate_tokens(attributes, prompt_tokens, progress) |
|
|
|
def generate(self, descriptions: tp.List[str], progress: bool = False) -> torch.Tensor: |
|
"""Generate samples conditioned on text. |
|
|
|
Args: |
|
descriptions (tp.List[str]): A list of strings used as text conditioning. |
|
progress (bool, optional): Flag to display progress of the generation process. Defaults to False. |
|
""" |
|
attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions, None) |
|
assert prompt_tokens is None |
|
return self._generate_tokens(attributes, prompt_tokens, progress) |
|
|
|
def generate_with_chroma(self, descriptions: tp.List[str], melody_wavs: MelodyType, |
|
melody_sample_rate: int, progress: bool = False) -> torch.Tensor: |
|
"""Generate samples conditioned on text and melody. |
|
|
|
Args: |
|
descriptions (tp.List[str]): A list of strings used as text conditioning. |
|
melody_wavs: (torch.Tensor or list of Tensor): A batch of waveforms used as |
|
melody conditioning. Should have shape [B, C, T] with B matching the description length, |
|
C=1 or 2. It can be [C, T] if there is a single description. It can also be |
|
a list of [C, T] tensors. |
|
melody_sample_rate: (int): Sample rate of the melody waveforms. |
|
progress (bool, optional): Flag to display progress of the generation process. Defaults to False. |
|
""" |
|
if isinstance(melody_wavs, torch.Tensor): |
|
if melody_wavs.dim() == 2: |
|
melody_wavs = melody_wavs[None] |
|
if melody_wavs.dim() != 3: |
|
raise ValueError("Melody wavs should have a shape [B, C, T].") |
|
melody_wavs = list(melody_wavs) |
|
else: |
|
for melody in melody_wavs: |
|
if melody is not None: |
|
assert melody.dim() == 2, "One melody in the list has the wrong number of dims." |
|
|
|
melody_wavs = [ |
|
convert_audio(wav, melody_sample_rate, self.sample_rate, self.audio_channels) |
|
if wav is not None else None |
|
for wav in melody_wavs] |
|
attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions=descriptions, prompt=None, |
|
melody_wavs=melody_wavs) |
|
assert prompt_tokens is None |
|
return self._generate_tokens(attributes, prompt_tokens, progress) |
|
|
|
def generate_continuation(self, prompt: torch.Tensor, prompt_sample_rate: int, |
|
descriptions: tp.Optional[tp.List[tp.Optional[str]]] = None, |
|
progress: bool = False) -> torch.Tensor: |
|
"""Generate samples conditioned on audio prompts. |
|
|
|
Args: |
|
prompt (torch.Tensor): A batch of waveforms used for continuation. |
|
Prompt should be [B, C, T], or [C, T] if only one sample is generated. |
|
prompt_sample_rate (int): Sampling rate of the given audio waveforms. |
|
descriptions (tp.List[str], optional): A list of strings used as text conditioning. Defaults to None. |
|
progress (bool, optional): Flag to display progress of the generation process. Defaults to False. |
|
""" |
|
if prompt.dim() == 2: |
|
prompt = prompt[None] |
|
if prompt.dim() != 3: |
|
raise ValueError("prompt should have 3 dimensions: [B, C, T] (C = 1).") |
|
prompt = convert_audio(prompt, prompt_sample_rate, self.sample_rate, self.audio_channels) |
|
if descriptions is None: |
|
descriptions = [None] * len(prompt) |
|
attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions, prompt) |
|
assert prompt_tokens is not None |
|
return self._generate_tokens(attributes, prompt_tokens, progress) |
|
|
|
@torch.no_grad() |
|
def _prepare_tokens_and_attributes( |
|
self, |
|
descriptions: tp.Sequence[tp.Optional[str]], |
|
prompt: tp.Optional[torch.Tensor], |
|
melody_wavs: tp.Optional[MelodyList] = None, |
|
) -> tp.Tuple[tp.List[ConditioningAttributes], tp.Optional[torch.Tensor]]: |
|
"""Prepare model inputs. |
|
|
|
Args: |
|
descriptions (tp.List[str]): A list of strings used as text conditioning. |
|
prompt (torch.Tensor): A batch of waveforms used for continuation. |
|
melody_wavs (tp.Optional[torch.Tensor], optional): A batch of waveforms |
|
used as melody conditioning. Defaults to None. |
|
""" |
|
attributes = [ |
|
ConditioningAttributes(text={'description': description}) |
|
for description in descriptions] |
|
|
|
if melody_wavs is None: |
|
for attr in attributes: |
|
attr.wav['self_wav'] = WavCondition( |
|
torch.zeros((1, 1), device=self.device), |
|
torch.tensor([0], device=self.device), |
|
path='null_wav') |
|
else: |
|
if self.name != "melody": |
|
raise RuntimeError("This model doesn't support melody conditioning. " |
|
"Use the `melody` model.") |
|
assert len(melody_wavs) == len(descriptions), \ |
|
f"number of melody wavs must match number of descriptions! " \ |
|
f"got melody len={len(melody_wavs)}, and descriptions len={len(descriptions)}" |
|
for attr, melody in zip(attributes, melody_wavs): |
|
if melody is None: |
|
attr.wav['self_wav'] = WavCondition( |
|
torch.zeros((1, 1), device=self.device), |
|
torch.tensor([0], device=self.device), |
|
path='null_wav') |
|
else: |
|
attr.wav['self_wav'] = WavCondition( |
|
melody.to(device=self.device), |
|
torch.tensor([melody.shape[-1]], device=self.device)) |
|
|
|
if prompt is not None: |
|
if descriptions is not None: |
|
assert len(descriptions) == len(prompt), "Prompt and nb. descriptions doesn't match" |
|
prompt = prompt.to(self.device) |
|
prompt_tokens, scale = self.compression_model.encode(prompt) |
|
assert scale is None |
|
else: |
|
prompt_tokens = None |
|
return attributes, prompt_tokens |
|
|
|
def _generate_tokens(self, attributes: tp.List[ConditioningAttributes], |
|
prompt_tokens: tp.Optional[torch.Tensor], progress: bool = False) -> torch.Tensor: |
|
"""Generate discrete audio tokens given audio prompt and/or conditions. |
|
|
|
Args: |
|
attributes (tp.List[ConditioningAttributes]): Conditions used for generation (text/melody). |
|
prompt_tokens (tp.Optional[torch.Tensor]): Audio prompt used for continuation. |
|
progress (bool, optional): Flag to display progress of the generation process. Defaults to False. |
|
Returns: |
|
torch.Tensor: Generated audio, of shape [B, C, T], T is defined by the generation params. |
|
""" |
|
total_gen_len = int(self.duration * self.frame_rate) |
|
max_prompt_len = int(min(self.duration, self.max_duration) * self.frame_rate) |
|
current_gen_offset: int = 0 |
|
|
|
def _progress_callback(generated_tokens: int, tokens_to_generate: int): |
|
generated_tokens += current_gen_offset |
|
if self._progress_callback is not None: |
|
|
|
|
|
self._progress_callback(generated_tokens, total_gen_len) |
|
else: |
|
print(f'{generated_tokens: 6d} / {total_gen_len: 6d}', end='\r') |
|
|
|
if prompt_tokens is not None: |
|
assert max_prompt_len >= prompt_tokens.shape[-1], \ |
|
"Prompt is longer than audio to generate" |
|
|
|
callback = None |
|
if progress: |
|
callback = _progress_callback |
|
|
|
if self.duration <= self.max_duration: |
|
|
|
with self.autocast: |
|
gen_tokens = self.lm.generate( |
|
prompt_tokens, attributes, |
|
callback=callback, max_gen_len=total_gen_len, **self.generation_params) |
|
|
|
else: |
|
|
|
|
|
ref_wavs = [attr.wav['self_wav'] for attr in attributes] |
|
all_tokens = [] |
|
if prompt_tokens is None: |
|
prompt_length = 0 |
|
else: |
|
all_tokens.append(prompt_tokens) |
|
prompt_length = prompt_tokens.shape[-1] |
|
|
|
stride_tokens = int(self.frame_rate * self.extend_stride) |
|
|
|
while current_gen_offset + prompt_length < total_gen_len: |
|
time_offset = current_gen_offset / self.frame_rate |
|
chunk_duration = min(self.duration - time_offset, self.max_duration) |
|
max_gen_len = int(chunk_duration * self.frame_rate) |
|
for attr, ref_wav in zip(attributes, ref_wavs): |
|
wav_length = ref_wav.length.item() |
|
if wav_length == 0: |
|
continue |
|
|
|
|
|
|
|
initial_position = int(time_offset * self.sample_rate) |
|
wav_target_length = int(self.max_duration * self.sample_rate) |
|
print(initial_position / self.sample_rate, wav_target_length / self.sample_rate) |
|
positions = torch.arange(initial_position, |
|
initial_position + wav_target_length, device=self.device) |
|
attr.wav['self_wav'] = WavCondition( |
|
ref_wav[0][:, positions % wav_length], |
|
torch.full_like(ref_wav[1], wav_target_length)) |
|
with self.autocast: |
|
gen_tokens = self.lm.generate( |
|
prompt_tokens, attributes, |
|
callback=callback, max_gen_len=max_gen_len, **self.generation_params) |
|
if prompt_tokens is None: |
|
all_tokens.append(gen_tokens) |
|
else: |
|
all_tokens.append(gen_tokens[:, :, prompt_tokens.shape[-1]:]) |
|
prompt_tokens = gen_tokens[:, :, stride_tokens:] |
|
prompt_length = prompt_tokens.shape[-1] |
|
current_gen_offset += stride_tokens |
|
|
|
gen_tokens = torch.cat(all_tokens, dim=-1) |
|
|
|
|
|
assert gen_tokens.dim() == 3 |
|
with torch.no_grad(): |
|
gen_audio = self.compression_model.decode(gen_tokens, None) |
|
return gen_audio |
|
|