MiDaS_RECO / app.py
akhaliq's picture
akhaliq HF staff
Update app.py
0b19d38
import cv2
import torch
import gradio as gr
import numpy as np
from PIL import Image
torch.hub.download_url_to_file('https://images.unsplash.com/photo-1437622368342-7a3d73a34c8f', 'turtle.jpg')
torch.hub.download_url_to_file('https://images.unsplash.com/photo-1519066629447-267fffa62d4b', 'lions.jpg')
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS")
use_large_model = True
if use_large_model:
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS")
else:
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS_small")
device = "cpu"
midas.to(device)
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
if use_large_model:
transform = midas_transforms.default_transform
else:
transform = midas_transforms.small_transform
def depth(img):
cv_image = np.array(img)
img = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB)
input_batch = transform(img).to(device)
with torch.no_grad():
prediction = midas(input_batch)
prediction = torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=img.shape[:2],
mode="bicubic",
align_corners=False,
).squeeze()
output = prediction.cpu().numpy()
formatted = (output * 255 / np.max(output)).astype('uint8')
img = Image.fromarray(formatted)
return img
inputs = gr.inputs.Image(type='pil', label="Original Image")
outputs = gr.outputs.Image(type="pil",label="Output Image")
title = "MiDaS"
description = "Gradio demo for MiDaS v2.1 which takes in a single image for computing relative depth. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1907.01341v3'>Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer</a> | <a href='https://github.com/intel-isl/MiDaS'>Github Repo</a></p>"
examples = [
["turtle.jpg"],
["lions.jpg"]
]
gr.Interface(depth, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch(enable_queue=True,cache_examples=True)