Spaces:
Runtime error
Runtime error
import cv2 | |
import torch | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
torch.hub.download_url_to_file('https://images.unsplash.com/photo-1437622368342-7a3d73a34c8f', 'turtle.jpg') | |
torch.hub.download_url_to_file('https://images.unsplash.com/photo-1519066629447-267fffa62d4b', 'lions.jpg') | |
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS") | |
use_large_model = True | |
if use_large_model: | |
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS") | |
else: | |
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS_small") | |
device = "cpu" | |
midas.to(device) | |
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms") | |
if use_large_model: | |
transform = midas_transforms.default_transform | |
else: | |
transform = midas_transforms.small_transform | |
def depth(img): | |
cv_image = np.array(img) | |
img = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB) | |
input_batch = transform(img).to(device) | |
with torch.no_grad(): | |
prediction = midas(input_batch) | |
prediction = torch.nn.functional.interpolate( | |
prediction.unsqueeze(1), | |
size=img.shape[:2], | |
mode="bicubic", | |
align_corners=False, | |
).squeeze() | |
output = prediction.cpu().numpy() | |
formatted = (output * 255 / np.max(output)).astype('uint8') | |
img = Image.fromarray(formatted) | |
return img | |
inputs = gr.inputs.Image(type='pil', label="Original Image") | |
outputs = gr.outputs.Image(type="pil",label="Output Image") | |
title = "MiDaS" | |
description = "Gradio demo for MiDaS v2.1 which takes in a single image for computing relative depth. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1907.01341v3'>Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer</a> | <a href='https://github.com/intel-isl/MiDaS'>Github Repo</a></p>" | |
examples = [ | |
["turtle.jpg"], | |
["lions.jpg"] | |
] | |
gr.Interface(depth, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch(enable_queue=True,cache_examples=True) |