YuukiAsuna's picture
Update app.py
9402145 verified
import gradio as gr
import os
import numpy as np
import torch
import torchvision.transforms as T
# from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
import matplotlib.pyplot as plt
import glob
import spaces
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
# Save the original cuda() method
original_cuda = torch.Tensor.cuda
# Define a new cuda() method
def safe_cuda(self, *args, **kwargs):
if torch.cuda.is_available():
return original_cuda(self, *args, **kwargs) # Use the original cuda() method
else:
return self # Return the tensor itself (stays on CPU)
# Monkey-patch the cuda() method
torch.Tensor.cuda = safe_cuda
model_name = "YuukiAsuna/Vintern-1B-v2-ViTable-docvqa"
model = AutoModel.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)
# @spaces.GPU
def chat(message, history):
print(history)
print(message)
if len(history) == 0 or len(message["files"]) != 0:
test_image = message["files"][0]
else:
test_image = history[0][0][0]
pixel_values = load_image(test_image, max_num=12).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens= 1024, do_sample=True, num_beams = 3, repetition_penalty=2.5)
if len(history) == 0:
question = '<image>\n'+message["text"]
response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
else:
conv_history = []
for chat_pair in history:
if chat_pair[1] is not None:
if len(conv_history) == 0 and len(message["files"]) == 0:
chat_pair[0] = '<image>\n' + chat_pair[0]
conv_history.append(tuple(chat_pair))
print(conv_history)
if len(message["files"]) != 0:
question = '<image>\n'+message["text"]
else:
question = message["text"]
response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=conv_history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
return response
CSS ="""
#component-3 {
height: 50dvh !important;
transform-origin: top; /* Đảm bảo rằng phần tử mở rộng từ trên xuống */
border-style: solid;
overflow: hidden;
flex-grow: 1;
min-width: min(160px, 100%);
border-width: var(--block-border-width);
}
/* Đảm bảo ảnh bên trong nút hiển thị đúng cách cho các nút có aria-label chỉ định */
button.svelte-1lcyrx4[aria-label="user's message: a file of type image/jpeg, "] img.svelte-1pijsyv {
width: 100%;
object-fit: contain;
height: 100%;
border-radius: 13px; /* Thêm bo góc cho ảnh */
max-width: 50vw; /* Giới hạn chiều rộng ảnh */
}
/* Đặt chiều cao cho nút và cho phép chọn văn bản chỉ cho các nút có aria-label chỉ định */
button.svelte-1lcyrx4[aria-label="user's message: a file of type image/jpeg, "] {
user-select: text;
text-align: left;
height: 300px;
}
/* Thêm bo góc và giới hạn chiều rộng cho ảnh không thuộc avatar container */
.message-wrap.svelte-1lcyrx4 > div.svelte-1lcyrx4 .svelte-1lcyrx4:not(.avatar-container) img {
border-radius: 13px;
max-width: 50vw;
}
.message-wrap.svelte-1lcyrx4 .message.svelte-1lcyrx4 img {
margin: var(--size-2);
max-height: 500px;
}
"""
demo = gr.ChatInterface(
fn=chat,
description="""Try [Vintern-1B-v2-ViTable-docvqa](https://huggingface.co/YuukiAsuna/Vintern-1B-v2-ViTable-docvqa) in this demo. Vintern-1B-v2-ViTable-docvqa is a finetuned version of [Vintern-1B-v2](https://huggingface.co/5CD-AI/Vintern-1B-v2)""",
title="Vintern-1B-v2-ViTable-docvqa",
multimodal=True,
css=CSS
)
demo.queue().launch()