# -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # Contact: ps-license@tuebingen.mpg.de from __future__ import absolute_import from __future__ import print_function from __future__ import division import numpy as np import torch import torch.nn as nn from .utils import to_tensor class VertexJointSelector(nn.Module): def __init__(self, vertex_ids=None, use_hands=True, use_feet_keypoints=True, **kwargs): super(VertexJointSelector, self).__init__() extra_joints_idxs = [] face_keyp_idxs = np.array( [ vertex_ids["nose"], vertex_ids["reye"], vertex_ids["leye"], vertex_ids["rear"], vertex_ids["lear"], ], dtype=np.int64, ) extra_joints_idxs = np.concatenate([extra_joints_idxs, face_keyp_idxs]) if use_feet_keypoints: feet_keyp_idxs = np.array( [ vertex_ids["LBigToe"], vertex_ids["LSmallToe"], vertex_ids["LHeel"], vertex_ids["RBigToe"], vertex_ids["RSmallToe"], vertex_ids["RHeel"], ], dtype=np.int32, ) extra_joints_idxs = np.concatenate( [extra_joints_idxs, feet_keyp_idxs]) if use_hands: self.tip_names = ["thumb", "index", "middle", "ring", "pinky"] tips_idxs = [] for hand_id in ["l", "r"]: for tip_name in self.tip_names: tips_idxs.append(vertex_ids[hand_id + tip_name]) extra_joints_idxs = np.concatenate([extra_joints_idxs, tips_idxs]) self.register_buffer("extra_joints_idxs", to_tensor(extra_joints_idxs, dtype=torch.long)) def forward(self, vertices, joints): extra_joints = torch.index_select(vertices, 1, self.extra_joints_idxs) joints = torch.cat([joints, extra_joints], dim=1) return joints