ECON / lib /net /FBNet.py
Yuliang's picture
Support TEXTure
487ee6d
"""
Copyright (C) 2019 NVIDIA Corporation. Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu.
BSD License. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
"""
import functools
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models
###############################################################################
# Functions
###############################################################################
def weights_init(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find("BatchNorm2d") != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def get_norm_layer(norm_type="instance"):
if norm_type == "batch":
norm_layer = functools.partial(nn.BatchNorm2d, affine=True)
elif norm_type == "instance":
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False)
else:
raise NotImplementedError("normalization layer [%s] is not found" % norm_type)
return norm_layer
def define_G(
input_nc,
output_nc,
ngf,
netG,
n_downsample_global=3,
n_blocks_global=9,
n_local_enhancers=1,
n_blocks_local=3,
norm="instance",
gpu_ids=[],
last_op=nn.Tanh(),
):
norm_layer = get_norm_layer(norm_type=norm)
if netG == "global":
netG = GlobalGenerator(
input_nc,
output_nc,
ngf,
n_downsample_global,
n_blocks_global,
norm_layer,
last_op=last_op,
)
elif netG == "local":
netG = LocalEnhancer(
input_nc,
output_nc,
ngf,
n_downsample_global,
n_blocks_global,
n_local_enhancers,
n_blocks_local,
norm_layer,
)
elif netG == "encoder":
netG = Encoder(input_nc, output_nc, ngf, n_downsample_global, norm_layer)
else:
raise ("generator not implemented!")
# print(netG)
if len(gpu_ids) > 0:
assert torch.cuda.is_available()
netG.cuda(gpu_ids[0])
netG.apply(weights_init)
return netG
def define_D(
input_nc,
ndf,
n_layers_D,
norm='instance',
use_sigmoid=False,
num_D=1,
getIntermFeat=False,
gpu_ids=[]
):
norm_layer = get_norm_layer(norm_type=norm)
netD = MultiscaleDiscriminator(
input_nc, ndf, n_layers_D, norm_layer, use_sigmoid, num_D, getIntermFeat
)
if len(gpu_ids) > 0:
assert (torch.cuda.is_available())
netD.cuda(gpu_ids[0])
netD.apply(weights_init)
return netD
def print_network(net):
if isinstance(net, list):
net = net[0]
num_params = 0
for param in net.parameters():
num_params += param.numel()
print(net)
print("Total number of parameters: %d" % num_params)
##############################################################################
# Generator
##############################################################################
class LocalEnhancer(pl.LightningModule):
def __init__(
self,
input_nc,
output_nc,
ngf=32,
n_downsample_global=3,
n_blocks_global=9,
n_local_enhancers=1,
n_blocks_local=3,
norm_layer=nn.BatchNorm2d,
padding_type="reflect",
):
super(LocalEnhancer, self).__init__()
self.n_local_enhancers = n_local_enhancers
###### global generator model #####
ngf_global = ngf * (2**n_local_enhancers)
model_global = GlobalGenerator(
input_nc,
output_nc,
ngf_global,
n_downsample_global,
n_blocks_global,
norm_layer,
).model
model_global = [
model_global[i] for i in range(len(model_global) - 3)
] # get rid of final convolution layers
self.model = nn.Sequential(*model_global)
###### local enhancer layers #####
for n in range(1, n_local_enhancers + 1):
# downsample
ngf_global = ngf * (2**(n_local_enhancers - n))
model_downsample = [
nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, ngf_global, kernel_size=7, padding=0),
norm_layer(ngf_global),
nn.ReLU(True),
nn.Conv2d(ngf_global, ngf_global * 2, kernel_size=3, stride=2, padding=1),
norm_layer(ngf_global * 2),
nn.ReLU(True),
]
# residual blocks
model_upsample = []
for i in range(n_blocks_local):
model_upsample += [
ResnetBlock(ngf_global * 2, padding_type=padding_type, norm_layer=norm_layer)
]
# upsample
model_upsample += [
nn.ConvTranspose2d(
ngf_global * 2,
ngf_global,
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
),
norm_layer(ngf_global),
nn.ReLU(True),
]
# final convolution
if n == n_local_enhancers:
model_upsample += [
nn.ReflectionPad2d(3),
nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0),
nn.Tanh(),
]
setattr(self, "model" + str(n) + "_1", nn.Sequential(*model_downsample))
setattr(self, "model" + str(n) + "_2", nn.Sequential(*model_upsample))
self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False)
def forward(self, input):
# create input pyramid
input_downsampled = [input]
for i in range(self.n_local_enhancers):
input_downsampled.append(self.downsample(input_downsampled[-1]))
# output at coarest level
output_prev = self.model(input_downsampled[-1])
# build up one layer at a time
for n_local_enhancers in range(1, self.n_local_enhancers + 1):
model_downsample = getattr(self, "model" + str(n_local_enhancers) + "_1")
model_upsample = getattr(self, "model" + str(n_local_enhancers) + "_2")
input_i = input_downsampled[self.n_local_enhancers - n_local_enhancers]
output_prev = model_upsample(model_downsample(input_i) + output_prev)
return output_prev
class GlobalGenerator(pl.LightningModule):
def __init__(
self,
input_nc,
output_nc,
ngf=64,
n_downsampling=3,
n_blocks=9,
norm_layer=nn.BatchNorm2d,
padding_type="reflect",
last_op=nn.Tanh(),
):
assert n_blocks >= 0
super(GlobalGenerator, self).__init__()
activation = nn.ReLU(True)
model = [
nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0),
norm_layer(ngf),
activation,
]
# downsample
for i in range(n_downsampling):
mult = 2**i
model += [
nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
norm_layer(ngf * mult * 2),
activation,
]
# resnet blocks
mult = 2**n_downsampling
for i in range(n_blocks):
model += [
ResnetBlock(
ngf * mult,
padding_type=padding_type,
activation=activation,
norm_layer=norm_layer,
)
]
# upsample
for i in range(n_downsampling):
mult = 2**(n_downsampling - i)
model += [
nn.ConvTranspose2d(
ngf * mult,
int(ngf * mult / 2),
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
),
norm_layer(int(ngf * mult / 2)),
activation,
]
model += [
nn.ReflectionPad2d(3),
nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0),
]
if last_op is not None:
model += [last_op]
self.model = nn.Sequential(*model)
def forward(self, input):
return self.model(input)
# Defines the PatchGAN discriminator with the specified arguments.
class NLayerDiscriminator(nn.Module):
def __init__(
self,
input_nc,
ndf=64,
n_layers=3,
norm_layer=nn.BatchNorm2d,
use_sigmoid=False,
getIntermFeat=False
):
super(NLayerDiscriminator, self).__init__()
self.getIntermFeat = getIntermFeat
self.n_layers = n_layers
kw = 4
padw = int(np.ceil((kw - 1.0) / 2))
sequence = [[
nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
nn.LeakyReLU(0.2, True)
]]
nf = ndf
for n in range(1, n_layers):
nf_prev = nf
nf = min(nf * 2, 512)
sequence += [[
nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw),
norm_layer(nf),
nn.LeakyReLU(0.2, True)
]]
nf_prev = nf
nf = min(nf * 2, 512)
sequence += [[
nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw),
norm_layer(nf),
nn.LeakyReLU(0.2, True)
]]
sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]
if use_sigmoid:
sequence += [[nn.Sigmoid()]]
if getIntermFeat:
for n in range(len(sequence)):
setattr(self, 'model' + str(n), nn.Sequential(*sequence[n]))
else:
sequence_stream = []
for n in range(len(sequence)):
sequence_stream += sequence[n]
self.model = nn.Sequential(*sequence_stream)
def forward(self, input):
if self.getIntermFeat:
res = [input]
for n in range(self.n_layers + 2):
model = getattr(self, 'model' + str(n))
res.append(model(res[-1]))
return res[1:]
else:
return self.model(input)
class MultiscaleDiscriminator(pl.LightningModule):
def __init__(
self,
input_nc,
ndf=64,
n_layers=3,
norm_layer=nn.BatchNorm2d,
use_sigmoid=False,
num_D=3,
getIntermFeat=False
):
super(MultiscaleDiscriminator, self).__init__()
self.num_D = num_D
self.n_layers = n_layers
self.getIntermFeat = getIntermFeat
for i in range(num_D):
netD = NLayerDiscriminator(
input_nc, ndf, n_layers, norm_layer, use_sigmoid, getIntermFeat
)
if getIntermFeat:
for j in range(n_layers + 2):
setattr(
self, 'scale' + str(i) + '_layer' + str(j), getattr(netD, 'model' + str(j))
)
else:
setattr(self, 'layer' + str(i), netD.model)
self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False)
def singleD_forward(self, model, input):
if self.getIntermFeat:
result = [input]
for i in range(len(model)):
result.append(model[i](result[-1]))
return result[1:]
else:
return [model(input)]
def forward(self, input):
num_D = self.num_D
result = []
input_downsampled = input.clone()
for i in range(num_D):
if self.getIntermFeat:
model = [
getattr(self, 'scale' + str(num_D - 1 - i) + '_layer' + str(j))
for j in range(self.n_layers + 2)
]
else:
model = getattr(self, 'layer' + str(num_D - 1 - i))
result.append(self.singleD_forward(model, input_downsampled))
if i != (num_D - 1):
input_downsampled = self.downsample(input_downsampled)
return result
# Define a resnet block
class ResnetBlock(pl.LightningModule):
def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False):
super(ResnetBlock, self).__init__()
self.conv_block = self.build_conv_block(
dim, padding_type, norm_layer, activation, use_dropout
)
def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout):
conv_block = []
p = 0
if padding_type == "reflect":
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == "replicate":
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == "zero":
p = 1
else:
raise NotImplementedError("padding [%s] is not implemented" % padding_type)
conv_block += [
nn.Conv2d(dim, dim, kernel_size=3, padding=p),
norm_layer(dim),
activation,
]
if use_dropout:
conv_block += [nn.Dropout(0.5)]
p = 0
if padding_type == "reflect":
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == "replicate":
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == "zero":
p = 1
else:
raise NotImplementedError("padding [%s] is not implemented" % padding_type)
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), norm_layer(dim)]
return nn.Sequential(*conv_block)
def forward(self, x):
out = x + self.conv_block(x)
return out
class Encoder(pl.LightningModule):
def __init__(self, input_nc, output_nc, ngf=32, n_downsampling=4, norm_layer=nn.BatchNorm2d):
super(Encoder, self).__init__()
self.output_nc = output_nc
model = [
nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0),
norm_layer(ngf),
nn.ReLU(True),
]
# downsample
for i in range(n_downsampling):
mult = 2**i
model += [
nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
norm_layer(ngf * mult * 2),
nn.ReLU(True),
]
# upsample
for i in range(n_downsampling):
mult = 2**(n_downsampling - i)
model += [
nn.ConvTranspose2d(
ngf * mult,
int(ngf * mult / 2),
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
),
norm_layer(int(ngf * mult / 2)),
nn.ReLU(True),
]
model += [
nn.ReflectionPad2d(3),
nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0),
nn.Tanh(),
]
self.model = nn.Sequential(*model)
def forward(self, input, inst):
outputs = self.model(input)
# instance-wise average pooling
outputs_mean = outputs.clone()
inst_list = np.unique(inst.cpu().numpy().astype(int))
for i in inst_list:
for b in range(input.size()[0]):
indices = (inst[b:b + 1] == int(i)).nonzero() # n x 4
for j in range(self.output_nc):
output_ins = outputs[indices[:, 0] + b, indices[:, 1] + j, indices[:, 2],
indices[:, 3], ]
mean_feat = torch.mean(output_ins).expand_as(output_ins)
outputs_mean[indices[:, 0] + b, indices[:, 1] + j, indices[:, 2],
indices[:, 3], ] = mean_feat
return outputs_mean
class Vgg19(nn.Module):
def __init__(self, requires_grad=False):
super(Vgg19, self).__init__()
vgg_pretrained_features = models.vgg19(weights=models.VGG19_Weights.DEFAULT).features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
for x in range(2):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(2, 7):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(7, 12):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(12, 21):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
for x in range(21, 30):
self.slice5.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
h_relu1 = self.slice1(X)
h_relu2 = self.slice2(h_relu1)
h_relu3 = self.slice3(h_relu2)
h_relu4 = self.slice4(h_relu3)
h_relu5 = self.slice5(h_relu4)
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
return out
class VGG19FeatLayer(nn.Module):
def __init__(self):
super(VGG19FeatLayer, self).__init__()
self.vgg19 = models.vgg19(weights=models.VGG19_Weights.DEFAULT).features.eval()
self.register_buffer("mean", torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
self.register_buffer("std", torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
def forward(self, x):
out = {}
x = x - self.mean
x = x / self.std
ci = 1
ri = 0
for layer in self.vgg19.children():
if isinstance(layer, nn.Conv2d):
ri += 1
name = 'conv{}_{}'.format(ci, ri)
elif isinstance(layer, nn.ReLU):
ri += 1
name = 'relu{}_{}'.format(ci, ri)
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
ri = 0
name = 'pool_{}'.format(ci)
ci += 1
elif isinstance(layer, nn.BatchNorm2d):
name = 'bn_{}'.format(ci)
else:
raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__))
x = layer(x)
out[name] = x
# print([x for x in out])
return out
class VGGLoss(pl.LightningModule):
def __init__(self):
super(VGGLoss, self).__init__()
self.vgg = Vgg19().eval()
self.criterion = nn.L1Loss()
self.weights = [1.0 / 32, 1.0 / 16, 1.0 / 8, 1.0 / 4, 1.0]
def forward(self, x, y):
x_vgg, y_vgg = self.vgg(x), self.vgg(y)
loss = 0
for i in range(len(x_vgg)):
loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach())
return loss
class GANLoss(pl.LightningModule):
def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0):
super(GANLoss, self).__init__()
self.real_label = target_real_label
self.fake_label = target_fake_label
self.real_label_var = None
self.fake_label_var = None
self.tensor = torch.cuda.FloatTensor
if use_lsgan:
self.loss = nn.MSELoss()
else:
self.loss = nn.BCELoss()
def get_target_tensor(self, input, target_is_real):
target_tensor = None
if target_is_real:
create_label = ((self.real_label_var is None) or
(self.real_label_var.numel() != input.numel()))
if create_label:
real_tensor = self.tensor(input.size()).fill_(self.real_label)
self.real_label_var = real_tensor
self.real_label_var.requires_grad = False
target_tensor = self.real_label_var
else:
create_label = ((self.fake_label_var is None) or
(self.fake_label_var.numel() != input.numel()))
if create_label:
fake_tensor = self.tensor(input.size()).fill_(self.fake_label)
self.fake_label_var = fake_tensor
self.fake_label_var.requires_grad = False
target_tensor = self.fake_label_var
return target_tensor
def __call__(self, input, target_is_real):
if isinstance(input[0], list):
loss = 0
for input_i in input:
pred = input_i[-1]
target_tensor = self.get_target_tensor(pred, target_is_real)
loss += self.loss(pred, target_tensor)
return loss
else:
target_tensor = self.get_target_tensor(input[-1], target_is_real)
return self.loss(input[-1], target_tensor)
class IDMRFLoss(pl.LightningModule):
def __init__(self, featlayer=VGG19FeatLayer):
super(IDMRFLoss, self).__init__()
self.featlayer = featlayer()
self.feat_style_layers = {'relu3_2': 1.0, 'relu4_2': 1.0}
self.feat_content_layers = {'relu4_2': 1.0}
self.bias = 1.0
self.nn_stretch_sigma = 0.5
self.lambda_style = 1.0
self.lambda_content = 1.0
def sum_normalize(self, featmaps):
reduce_sum = torch.sum(featmaps, dim=1, keepdim=True)
return featmaps / reduce_sum
def patch_extraction(self, featmaps):
patch_size = 1
patch_stride = 1
patches_as_depth_vectors = featmaps.unfold(2, patch_size, patch_stride).unfold(
3, patch_size, patch_stride
)
self.patches_OIHW = patches_as_depth_vectors.permute(0, 2, 3, 1, 4, 5)
dims = self.patches_OIHW.size()
self.patches_OIHW = self.patches_OIHW.view(-1, dims[3], dims[4], dims[5])
return self.patches_OIHW
def compute_relative_distances(self, cdist):
epsilon = 1e-5
div = torch.min(cdist, dim=1, keepdim=True)[0]
relative_dist = cdist / (div + epsilon)
return relative_dist
def exp_norm_relative_dist(self, relative_dist):
scaled_dist = relative_dist
dist_before_norm = torch.exp((self.bias - scaled_dist) / self.nn_stretch_sigma)
self.cs_NCHW = self.sum_normalize(dist_before_norm)
return self.cs_NCHW
def mrf_loss(self, gen, tar):
meanT = torch.mean(tar, 1, keepdim=True)
gen_feats, tar_feats = gen - meanT, tar - meanT
gen_feats_norm = torch.norm(gen_feats, p=2, dim=1, keepdim=True)
tar_feats_norm = torch.norm(tar_feats, p=2, dim=1, keepdim=True)
gen_normalized = gen_feats / gen_feats_norm
tar_normalized = tar_feats / tar_feats_norm
cosine_dist_l = []
BatchSize = tar.size(0)
for i in range(BatchSize):
tar_feat_i = tar_normalized[i:i + 1, :, :, :]
gen_feat_i = gen_normalized[i:i + 1, :, :, :]
patches_OIHW = self.patch_extraction(tar_feat_i)
cosine_dist_i = F.conv2d(gen_feat_i, patches_OIHW)
cosine_dist_l.append(cosine_dist_i)
cosine_dist = torch.cat(cosine_dist_l, dim=0)
cosine_dist_zero_2_one = -(cosine_dist - 1) / 2
relative_dist = self.compute_relative_distances(cosine_dist_zero_2_one)
rela_dist = self.exp_norm_relative_dist(relative_dist)
dims_div_mrf = rela_dist.size()
k_max_nc = torch.max(rela_dist.view(dims_div_mrf[0], dims_div_mrf[1], -1), dim=2)[0]
div_mrf = torch.mean(k_max_nc, dim=1)
div_mrf_sum = -torch.log(div_mrf)
div_mrf_sum = torch.sum(div_mrf_sum)
return div_mrf_sum
def forward(self, gen, tar):
## gen: [bz,3,h,w] rgb [0,1]
gen_vgg_feats = self.featlayer(gen)
tar_vgg_feats = self.featlayer(tar)
style_loss_list = [
self.feat_style_layers[layer] *
self.mrf_loss(gen_vgg_feats[layer], tar_vgg_feats[layer])
for layer in self.feat_style_layers
]
self.style_loss = functools.reduce(lambda x, y: x + y, style_loss_list) * self.lambda_style
content_loss_list = [
self.feat_content_layers[layer] *
self.mrf_loss(gen_vgg_feats[layer], tar_vgg_feats[layer])
for layer in self.feat_content_layers
]
self.content_loss = functools.reduce(
lambda x, y: x + y, content_loss_list
) * self.lambda_content
return self.style_loss + self.content_loss