Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
# holder of all proprietary rights on this computer program. | |
# You can only use this computer program if you have closed | |
# a license agreement with MPG or you get the right to use the computer | |
# program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and | |
# liable to prosecution. | |
# | |
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
# for Intelligent Systems. All rights reserved. | |
# | |
# Contact: [email protected] | |
from lib.net.FBNet import define_G, define_D, VGGLoss, GANLoss, IDMRFLoss | |
from lib.net.net_util import init_net | |
from lib.net.BasePIFuNet import BasePIFuNet | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class NormalNet(BasePIFuNet): | |
""" | |
HG PIFu network uses Hourglass stacks as the image filter. | |
It does the following: | |
1. Compute image feature stacks and store it in self.im_feat_list | |
self.im_feat_list[-1] is the last stack (output stack) | |
2. Calculate calibration | |
3. If training, it index on every intermediate stacks, | |
If testing, it index on the last stack. | |
4. Classification. | |
5. During training, error is calculated on all stacks. | |
""" | |
def __init__(self, cfg): | |
super(NormalNet, self).__init__() | |
self.opt = cfg.net | |
self.F_losses = [item[0] for item in self.opt.front_losses] | |
self.B_losses = [item[0] for item in self.opt.back_losses] | |
self.F_losses_ratio = [item[1] for item in self.opt.front_losses] | |
self.B_losses_ratio = [item[1] for item in self.opt.back_losses] | |
self.ALL_losses = self.F_losses + self.B_losses | |
if self.training: | |
if 'vgg' in self.ALL_losses: | |
self.vgg_loss = VGGLoss() | |
if ('gan' in self.ALL_losses) or ('gan_feat' in self.ALL_losses): | |
self.gan_loss = GANLoss(use_lsgan=True) | |
if 'mrf' in self.ALL_losses: | |
self.mrf_loss = IDMRFLoss() | |
if 'l1' in self.ALL_losses: | |
self.l1_loss = nn.SmoothL1Loss() | |
self.in_nmlF = [ | |
item[0] for item in self.opt.in_nml if "_F" in item[0] or item[0] == "image" | |
] | |
self.in_nmlB = [ | |
item[0] for item in self.opt.in_nml if "_B" in item[0] or item[0] == "image" | |
] | |
self.in_nmlF_dim = sum( | |
[item[1] for item in self.opt.in_nml if "_F" in item[0] or item[0] == "image"] | |
) | |
self.in_nmlB_dim = sum( | |
[item[1] for item in self.opt.in_nml if "_B" in item[0] or item[0] == "image"] | |
) | |
self.netF = define_G(self.in_nmlF_dim, 3, 64, "global", 4, 9, 1, 3, "instance") | |
self.netB = define_G(self.in_nmlB_dim, 3, 64, "global", 4, 9, 1, 3, "instance") | |
if ('gan' in self.ALL_losses): | |
self.netD = define_D(3, 64, 3, 'instance', False, 2, 'gan_feat' in self.ALL_losses) | |
init_net(self) | |
def forward(self, in_tensor): | |
inF_list = [] | |
inB_list = [] | |
for name in self.in_nmlF: | |
inF_list.append(in_tensor[name]) | |
for name in self.in_nmlB: | |
inB_list.append(in_tensor[name]) | |
nmlF = self.netF(torch.cat(inF_list, dim=1)) | |
nmlB = self.netB(torch.cat(inB_list, dim=1)) | |
# ||normal|| == 1 | |
nmlF_normalized = nmlF / torch.norm(nmlF, dim=1, keepdim=True) | |
nmlB_normalized = nmlB / torch.norm(nmlB, dim=1, keepdim=True) | |
# output: float_arr [-1,1] with [B, C, H, W] | |
mask = ((in_tensor["image"].abs().sum(dim=1, keepdim=True) != 0.0).detach().float()) | |
return nmlF_normalized * mask, nmlB_normalized * mask | |
def get_norm_error(self, prd_F, prd_B, tgt): | |
"""calculate normal loss | |
Args: | |
pred (torch.tensor): [B, 6, 512, 512] | |
tagt (torch.tensor): [B, 6, 512, 512] | |
""" | |
tgt_F, tgt_B = tgt["normal_F"], tgt["normal_B"] | |
# netF, netB, netD | |
total_loss = {"netF": 0.0, "netB": 0.0} | |
if 'l1' in self.F_losses: | |
l1_F_loss = self.l1_loss(prd_F, tgt_F) | |
total_loss["netF"] += self.F_losses_ratio[self.F_losses.index('l1')] * l1_F_loss | |
total_loss["l1_F"] = self.F_losses_ratio[self.F_losses.index('l1')] * l1_F_loss | |
if 'l1' in self.B_losses: | |
l1_B_loss = self.l1_loss(prd_B, tgt_B) | |
total_loss["netB"] += self.B_losses_ratio[self.B_losses.index('l1')] * l1_B_loss | |
total_loss["l1_B"] = self.B_losses_ratio[self.B_losses.index('l1')] * l1_B_loss | |
if 'vgg' in self.F_losses: | |
vgg_F_loss = self.vgg_loss(prd_F, tgt_F) | |
total_loss["netF"] += self.F_losses_ratio[self.F_losses.index('vgg')] * vgg_F_loss | |
total_loss["vgg_F"] = self.F_losses_ratio[self.F_losses.index('vgg')] * vgg_F_loss | |
if 'vgg' in self.B_losses: | |
vgg_B_loss = self.vgg_loss(prd_B, tgt_B) | |
total_loss["netB"] += self.B_losses_ratio[self.B_losses.index('vgg')] * vgg_B_loss | |
total_loss["vgg_B"] = self.B_losses_ratio[self.B_losses.index('vgg')] * vgg_B_loss | |
scale_factor = 0.5 | |
if 'mrf' in self.F_losses: | |
mrf_F_loss = self.mrf_loss( | |
F.interpolate(prd_F, scale_factor=scale_factor, mode='bicubic', align_corners=True), | |
F.interpolate(tgt_F, scale_factor=scale_factor, mode='bicubic', align_corners=True) | |
) | |
total_loss["netF"] += self.F_losses_ratio[self.F_losses.index('mrf')] * mrf_F_loss | |
total_loss["mrf_F"] = self.F_losses_ratio[self.F_losses.index('mrf')] * mrf_F_loss | |
if 'mrf' in self.B_losses: | |
mrf_B_loss = self.mrf_loss( | |
F.interpolate(prd_B, scale_factor=scale_factor, mode='bicubic', align_corners=True), | |
F.interpolate(tgt_B, scale_factor=scale_factor, mode='bicubic', align_corners=True) | |
) | |
total_loss["netB"] += self.B_losses_ratio[self.B_losses.index('mrf')] * mrf_B_loss | |
total_loss["mrf_B"] = self.B_losses_ratio[self.B_losses.index('mrf')] * mrf_B_loss | |
if 'gan' in self.ALL_losses: | |
total_loss["netD"] = 0.0 | |
pred_fake = self.netD.forward(prd_B) | |
pred_real = self.netD.forward(tgt_B) | |
loss_D_fake = self.gan_loss(pred_fake, False) | |
loss_D_real = self.gan_loss(pred_real, True) | |
loss_G_fake = self.gan_loss(pred_fake, True) | |
total_loss["netD"] += 0.5 * (loss_D_fake + loss_D_real | |
) * self.B_losses_ratio[self.B_losses.index('gan')] | |
total_loss["D_fake"] = loss_D_fake * self.B_losses_ratio[self.B_losses.index('gan')] | |
total_loss["D_real"] = loss_D_real * self.B_losses_ratio[self.B_losses.index('gan')] | |
total_loss["netB"] += loss_G_fake * self.B_losses_ratio[self.B_losses.index('gan')] | |
total_loss["G_fake"] = loss_G_fake * self.B_losses_ratio[self.B_losses.index('gan')] | |
if 'gan_feat' in self.ALL_losses: | |
loss_G_GAN_Feat = 0 | |
for i in range(2): | |
for j in range(len(pred_fake[i]) - 1): | |
loss_G_GAN_Feat += self.l1_loss(pred_fake[i][j], pred_real[i][j].detach()) | |
total_loss["netB"] += loss_G_GAN_Feat * self.B_losses_ratio[ | |
self.B_losses.index('gan_feat')] | |
total_loss["G_GAN_Feat"] = loss_G_GAN_Feat * self.B_losses_ratio[ | |
self.B_losses.index('gan_feat')] | |
return total_loss | |