Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
# holder of all proprietary rights on this computer program. | |
# You can only use this computer program if you have closed | |
# a license agreement with MPG or you get the right to use the computer | |
# program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and | |
# liable to prosecution. | |
# | |
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
# for Intelligent Systems. All rights reserved. | |
# | |
# Contact: [email protected] | |
import numpy as np | |
import pickle | |
import torch | |
import os | |
class SMPLModel: | |
def __init__(self, model_path, age): | |
""" | |
SMPL model. | |
Parameter: | |
--------- | |
model_path: Path to the SMPL model parameters, pre-processed by | |
`preprocess.py`. | |
""" | |
with open(model_path, "rb") as f: | |
params = pickle.load(f, encoding="latin1") | |
self.J_regressor = params["J_regressor"] | |
self.weights = np.asarray(params["weights"]) | |
self.posedirs = np.asarray(params["posedirs"]) | |
self.v_template = np.asarray(params["v_template"]) | |
self.shapedirs = np.asarray(params["shapedirs"]) | |
self.faces = np.asarray(params["f"]) | |
self.kintree_table = np.asarray(params["kintree_table"]) | |
self.pose_shape = [24, 3] | |
self.beta_shape = [10] | |
self.trans_shape = [3] | |
if age == "kid": | |
v_template_smil = np.load( | |
os.path.join(os.path.dirname(model_path), "smpl/smpl_kid_template.npy") | |
) | |
v_template_smil -= np.mean(v_template_smil, axis=0) | |
v_template_diff = np.expand_dims(v_template_smil - self.v_template, axis=2) | |
self.shapedirs = np.concatenate( | |
(self.shapedirs[:, :, :self.beta_shape[0]], v_template_diff), axis=2 | |
) | |
self.beta_shape[0] += 1 | |
id_to_col = {self.kintree_table[1, i]: i for i in range(self.kintree_table.shape[1])} | |
self.parent = { | |
i: id_to_col[self.kintree_table[0, i]] | |
for i in range(1, self.kintree_table.shape[1]) | |
} | |
self.pose = np.zeros(self.pose_shape) | |
self.beta = np.zeros(self.beta_shape) | |
self.trans = np.zeros(self.trans_shape) | |
self.verts = None | |
self.J = None | |
self.R = None | |
self.G = None | |
self.update() | |
def set_params(self, pose=None, beta=None, trans=None): | |
""" | |
Set pose, shape, and/or translation parameters of SMPL model. Verices of the | |
model will be updated and returned. | |
Prameters: | |
--------- | |
pose: Also known as 'theta', a [24,3] matrix indicating child joint rotation | |
relative to parent joint. For root joint it's global orientation. | |
Represented in a axis-angle format. | |
beta: Parameter for model shape. A vector of shape [10]. Coefficients for | |
PCA component. Only 10 components were released by MPI. | |
trans: Global translation of shape [3]. | |
Return: | |
------ | |
Updated vertices. | |
""" | |
if pose is not None: | |
self.pose = pose | |
if beta is not None: | |
self.beta = beta | |
if trans is not None: | |
self.trans = trans | |
self.update() | |
return self.verts | |
def update(self): | |
""" | |
Called automatically when parameters are updated. | |
""" | |
# how beta affect body shape | |
v_shaped = self.shapedirs.dot(self.beta) + self.v_template | |
# joints location | |
self.J = self.J_regressor.dot(v_shaped) | |
pose_cube = self.pose.reshape((-1, 1, 3)) | |
# rotation matrix for each joint | |
self.R = self.rodrigues(pose_cube) | |
I_cube = np.broadcast_to(np.expand_dims(np.eye(3), axis=0), (self.R.shape[0] - 1, 3, 3)) | |
lrotmin = (self.R[1:] - I_cube).ravel() | |
# how pose affect body shape in zero pose | |
v_posed = v_shaped + self.posedirs.dot(lrotmin) | |
# world transformation of each joint | |
G = np.empty((self.kintree_table.shape[1], 4, 4)) | |
G[0] = self.with_zeros(np.hstack((self.R[0], self.J[0, :].reshape([3, 1])))) | |
for i in range(1, self.kintree_table.shape[1]): | |
G[i] = G[self.parent[i]].dot( | |
self.with_zeros( | |
np.hstack( | |
[ | |
self.R[i], | |
((self.J[i, :] - self.J[self.parent[i], :]).reshape([3, 1])), | |
] | |
) | |
) | |
) | |
# remove the transformation due to the rest pose | |
G = G - self.pack(np.matmul(G, np.hstack([self.J, np.zeros([24, 1])]).reshape([24, 4, 1]))) | |
# transformation of each vertex | |
T = np.tensordot(self.weights, G, axes=[[1], [0]]) | |
rest_shape_h = np.hstack((v_posed, np.ones([v_posed.shape[0], 1]))) | |
v = np.matmul(T, rest_shape_h.reshape([-1, 4, 1])).reshape([-1, 4])[:, :3] | |
self.verts = v + self.trans.reshape([1, 3]) | |
self.G = G | |
def rodrigues(self, r): | |
""" | |
Rodrigues' rotation formula that turns axis-angle vector into rotation | |
matrix in a batch-ed manner. | |
Parameter: | |
---------- | |
r: Axis-angle rotation vector of shape [batch_size, 1, 3]. | |
Return: | |
------- | |
Rotation matrix of shape [batch_size, 3, 3]. | |
""" | |
theta = np.linalg.norm(r, axis=(1, 2), keepdims=True) | |
# avoid zero divide | |
theta = np.maximum(theta, np.finfo(np.float64).tiny) | |
r_hat = r / theta | |
cos = np.cos(theta) | |
z_stick = np.zeros(theta.shape[0]) | |
m = np.dstack( | |
[ | |
z_stick, | |
-r_hat[:, 0, 2], | |
r_hat[:, 0, 1], | |
r_hat[:, 0, 2], | |
z_stick, | |
-r_hat[:, 0, 0], | |
-r_hat[:, 0, 1], | |
r_hat[:, 0, 0], | |
z_stick, | |
] | |
).reshape([-1, 3, 3]) | |
i_cube = np.broadcast_to(np.expand_dims(np.eye(3), axis=0), [theta.shape[0], 3, 3]) | |
A = np.transpose(r_hat, axes=[0, 2, 1]) | |
B = r_hat | |
dot = np.matmul(A, B) | |
R = cos * i_cube + (1 - cos) * dot + np.sin(theta) * m | |
return R | |
def with_zeros(self, x): | |
""" | |
Append a [0, 0, 0, 1] vector to a [3, 4] matrix. | |
Parameter: | |
--------- | |
x: Matrix to be appended. | |
Return: | |
------ | |
Matrix after appending of shape [4,4] | |
""" | |
return np.vstack((x, np.array([[0.0, 0.0, 0.0, 1.0]]))) | |
def pack(self, x): | |
""" | |
Append zero matrices of shape [4, 3] to vectors of [4, 1] shape in a batched | |
manner. | |
Parameter: | |
---------- | |
x: Matrices to be appended of shape [batch_size, 4, 1] | |
Return: | |
------ | |
Matrix of shape [batch_size, 4, 4] after appending. | |
""" | |
return np.dstack((np.zeros((x.shape[0], 4, 3)), x)) | |
def save_to_obj(self, path): | |
""" | |
Save the SMPL model into .obj file. | |
Parameter: | |
--------- | |
path: Path to save. | |
""" | |
with open(path, "w") as fp: | |
for v in self.verts: | |
fp.write("v %f %f %f\n" % (v[0], v[1], v[2])) | |
for f in self.faces + 1: | |
fp.write("f %d %d %d\n" % (f[0], f[1], f[2])) | |
class TetraSMPLModel: | |
def __init__(self, model_path, model_addition_path, age="adult", v_template=None): | |
""" | |
SMPL model. | |
Parameter: | |
--------- | |
model_path: Path to the SMPL model parameters, pre-processed by | |
`preprocess.py`. | |
""" | |
with open(model_path, "rb") as f: | |
params = pickle.load(f, encoding="latin1") | |
self.J_regressor = params["J_regressor"] | |
self.weights = np.asarray(params["weights"]) | |
self.posedirs = np.asarray(params["posedirs"]) | |
if v_template is not None: | |
self.v_template = v_template | |
else: | |
self.v_template = np.asarray(params["v_template"]) | |
self.shapedirs = np.asarray(params["shapedirs"]) | |
self.faces = np.asarray(params["f"]) | |
self.kintree_table = np.asarray(params["kintree_table"]) | |
params_added = np.load(model_addition_path) | |
self.v_template_added = params_added["v_template_added"] | |
self.weights_added = params_added["weights_added"] | |
self.shapedirs_added = params_added["shapedirs_added"] | |
self.posedirs_added = params_added["posedirs_added"] | |
self.tetrahedrons = params_added["tetrahedrons"] | |
id_to_col = {self.kintree_table[1, i]: i for i in range(self.kintree_table.shape[1])} | |
self.parent = { | |
i: id_to_col[self.kintree_table[0, i]] | |
for i in range(1, self.kintree_table.shape[1]) | |
} | |
self.pose_shape = [24, 3] | |
self.beta_shape = [10] | |
self.trans_shape = [3] | |
if age == "kid": | |
v_template_smil = np.load( | |
os.path.join(os.path.dirname(model_path), "smpl_kid_template.npy") | |
) | |
v_template_smil -= np.mean(v_template_smil, axis=0) | |
v_template_diff = np.expand_dims(v_template_smil - self.v_template, axis=2) | |
self.shapedirs = np.concatenate( | |
(self.shapedirs[:, :, :self.beta_shape[0]], v_template_diff), axis=2 | |
) | |
self.beta_shape[0] += 1 | |
self.pose = np.zeros(self.pose_shape) | |
self.beta = np.zeros(self.beta_shape) | |
self.trans = np.zeros(self.trans_shape) | |
self.verts = None | |
self.verts_added = None | |
self.J = None | |
self.R = None | |
self.G = None | |
self.update() | |
def set_params(self, pose=None, beta=None, trans=None): | |
""" | |
Set pose, shape, and/or translation parameters of SMPL model. Verices of the | |
model will be updated and returned. | |
Prameters: | |
--------- | |
pose: Also known as 'theta', a [24,3] matrix indicating child joint rotation | |
relative to parent joint. For root joint it's global orientation. | |
Represented in a axis-angle format. | |
beta: Parameter for model shape. A vector of shape [10]. Coefficients for | |
PCA component. Only 10 components were released by MPI. | |
trans: Global translation of shape [3]. | |
Return: | |
------ | |
Updated vertices. | |
""" | |
if torch.is_tensor(pose): | |
pose = pose.detach().cpu().numpy() | |
if torch.is_tensor(beta): | |
beta = beta.detach().cpu().numpy() | |
if pose is not None: | |
self.pose = pose | |
if beta is not None: | |
self.beta = beta.flatten() | |
if trans is not None: | |
self.trans = trans | |
self.update() | |
return self.verts | |
def update(self): | |
""" | |
Called automatically when parameters are updated. | |
""" | |
# how beta affect body shape | |
v_shaped = self.shapedirs.dot(self.beta) + self.v_template | |
v_shaped_added = self.shapedirs_added.dot(self.beta) + self.v_template_added | |
# joints location | |
self.J = self.J_regressor.dot(v_shaped) | |
pose_cube = self.pose.reshape((-1, 1, 3)) | |
# rotation matrix for each joint | |
self.R = self.rodrigues(pose_cube) | |
I_cube = np.broadcast_to(np.expand_dims(np.eye(3), axis=0), (self.R.shape[0] - 1, 3, 3)) | |
lrotmin = (self.R[1:] - I_cube).ravel() | |
# how pose affect body shape in zero pose | |
v_posed = v_shaped + self.posedirs.dot(lrotmin) | |
v_posed_added = v_shaped_added + self.posedirs_added.dot(lrotmin) | |
# world transformation of each joint | |
G = np.empty((self.kintree_table.shape[1], 4, 4)) | |
G[0] = self.with_zeros(np.hstack((self.R[0], self.J[0, :].reshape([3, 1])))) | |
for i in range(1, self.kintree_table.shape[1]): | |
G[i] = G[self.parent[i]].dot( | |
self.with_zeros( | |
np.hstack( | |
[ | |
self.R[i], | |
((self.J[i, :] - self.J[self.parent[i], :]).reshape([3, 1])), | |
] | |
) | |
) | |
) | |
# remove the transformation due to the rest pose | |
G = G - self.pack(np.matmul(G, np.hstack([self.J, np.zeros([24, 1])]).reshape([24, 4, 1]))) | |
self.G = G | |
# transformation of each vertex | |
T = np.tensordot(self.weights, G, axes=[[1], [0]]) | |
rest_shape_h = np.hstack((v_posed, np.ones([v_posed.shape[0], 1]))) | |
v = np.matmul(T, rest_shape_h.reshape([-1, 4, 1])).reshape([-1, 4])[:, :3] | |
self.verts = v + self.trans.reshape([1, 3]) | |
T_added = np.tensordot(self.weights_added, G, axes=[[1], [0]]) | |
rest_shape_added_h = np.hstack((v_posed_added, np.ones([v_posed_added.shape[0], 1]))) | |
v_added = np.matmul(T_added, rest_shape_added_h.reshape([-1, 4, 1])).reshape([-1, 4])[:, :3] | |
self.verts_added = v_added + self.trans.reshape([1, 3]) | |
def rodrigues(self, r): | |
""" | |
Rodrigues' rotation formula that turns axis-angle vector into rotation | |
matrix in a batch-ed manner. | |
Parameter: | |
---------- | |
r: Axis-angle rotation vector of shape [batch_size, 1, 3]. | |
Return: | |
------- | |
Rotation matrix of shape [batch_size, 3, 3]. | |
""" | |
theta = np.linalg.norm(r, axis=(1, 2), keepdims=True) | |
# avoid zero divide | |
theta = np.maximum(theta, np.finfo(np.float64).tiny) | |
r_hat = r / theta | |
cos = np.cos(theta) | |
z_stick = np.zeros(theta.shape[0]) | |
m = np.dstack( | |
[ | |
z_stick, | |
-r_hat[:, 0, 2], | |
r_hat[:, 0, 1], | |
r_hat[:, 0, 2], | |
z_stick, | |
-r_hat[:, 0, 0], | |
-r_hat[:, 0, 1], | |
r_hat[:, 0, 0], | |
z_stick, | |
] | |
).reshape([-1, 3, 3]) | |
i_cube = np.broadcast_to(np.expand_dims(np.eye(3), axis=0), [theta.shape[0], 3, 3]) | |
A = np.transpose(r_hat, axes=[0, 2, 1]) | |
B = r_hat | |
dot = np.matmul(A, B) | |
R = cos * i_cube + (1 - cos) * dot + np.sin(theta) * m | |
return R | |
def with_zeros(self, x): | |
""" | |
Append a [0, 0, 0, 1] vector to a [3, 4] matrix. | |
Parameter: | |
--------- | |
x: Matrix to be appended. | |
Return: | |
------ | |
Matrix after appending of shape [4,4] | |
""" | |
return np.vstack((x, np.array([[0.0, 0.0, 0.0, 1.0]]))) | |
def pack(self, x): | |
""" | |
Append zero matrices of shape [4, 3] to vectors of [4, 1] shape in a batched | |
manner. | |
Parameter: | |
---------- | |
x: Matrices to be appended of shape [batch_size, 4, 1] | |
Return: | |
------ | |
Matrix of shape [batch_size, 4, 4] after appending. | |
""" | |
return np.dstack((np.zeros((x.shape[0], 4, 3)), x)) | |
def save_mesh_to_obj(self, path): | |
""" | |
Save the SMPL model into .obj file. | |
Parameter: | |
--------- | |
path: Path to save. | |
""" | |
with open(path, "w") as fp: | |
for v in self.verts: | |
fp.write("v %f %f %f\n" % (v[0], v[1], v[2])) | |
for f in self.faces + 1: | |
fp.write("f %d %d %d\n" % (f[0], f[1], f[2])) | |
def save_tetrahedron_to_obj(self, path): | |
""" | |
Save the tetrahedron SMPL model into .obj file. | |
Parameter: | |
--------- | |
path: Path to save. | |
""" | |
with open(path, "w") as fp: | |
for v in self.verts: | |
fp.write("v %f %f %f 1 0 0\n" % (v[0], v[1], v[2])) | |
for va in self.verts_added: | |
fp.write("v %f %f %f 0 0 1\n" % (va[0], va[1], va[2])) | |
for t in self.tetrahedrons + 1: | |
fp.write("f %d %d %d\n" % (t[0], t[2], t[1])) | |
fp.write("f %d %d %d\n" % (t[0], t[3], t[2])) | |
fp.write("f %d %d %d\n" % (t[0], t[1], t[3])) | |
fp.write("f %d %d %d\n" % (t[1], t[2], t[3])) | |