ECON / lib /net /IFGeoNet_nobody.py
Yuliang's picture
init
da48dbe
raw
history blame
7.03 kB
from pickle import TRUE
import torch
import torch.nn as nn
import torch.nn.functional as F
from lib.net.voxelize import Voxelization
from lib.net.geometry import orthogonal
from lib.dataset.mesh_util import read_smpl_constants, SMPLX
class SelfAttention(torch.nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv = nn.Conv3d(in_channels, out_channels, 3, padding=1, padding_mode='replicate')
self.attention = nn.Conv3d(in_channels,
out_channels,
kernel_size=3,
padding=1,
padding_mode='replicate',
bias=False)
with torch.no_grad():
self.attention.weight.copy_(torch.zeros_like(self.attention.weight))
def forward(self, x):
features = self.conv(x)
attention_mask = torch.sigmoid(self.attention(x))
return features * attention_mask
class IFGeoNet(nn.Module):
def __init__(self, cfg, hidden_dim=256):
super(IFGeoNet, self).__init__()
self.conv_in_partial = nn.Conv3d(1, 16, 3, padding=1,
padding_mode='replicate') # out: 256 ->m.p. 128
self.SA = SelfAttention(4, 4)
self.conv_0_fusion = nn.Conv3d(16, 32, 3, padding=1, padding_mode='replicate') # out: 128
self.conv_0_1_fusion = nn.Conv3d(32, 32, 3, padding=1,
padding_mode='replicate') # out: 128 ->m.p. 64
self.conv_0 = nn.Conv3d(32, 32, 3, padding=1, padding_mode='replicate') # out: 128
self.conv_0_1 = nn.Conv3d(32, 32, 3, padding=1,
padding_mode='replicate') # out: 128 ->m.p. 64
self.conv_1 = nn.Conv3d(32, 64, 3, padding=1, padding_mode='replicate') # out: 64
self.conv_1_1 = nn.Conv3d(64, 64, 3, padding=1,
padding_mode='replicate') # out: 64 -> mp 32
self.conv_2 = nn.Conv3d(64, 128, 3, padding=1, padding_mode='replicate') # out: 32
self.conv_2_1 = nn.Conv3d(128, 128, 3, padding=1,
padding_mode='replicate') # out: 32 -> mp 16
self.conv_3 = nn.Conv3d(128, 128, 3, padding=1, padding_mode='replicate') # out: 16
self.conv_3_1 = nn.Conv3d(128, 128, 3, padding=1,
padding_mode='replicate') # out: 16 -> mp 8
self.conv_4 = nn.Conv3d(128, 128, 3, padding=1, padding_mode='replicate') # out: 8
self.conv_4_1 = nn.Conv3d(128, 128, 3, padding=1, padding_mode='replicate') # out: 8
feature_size = (1 + 32 + 32 + 64 + 128 + 128 + 128) + 3
self.fc_0 = nn.Conv1d(feature_size, hidden_dim * 2, 1)
self.fc_1 = nn.Conv1d(hidden_dim * 2, hidden_dim, 1)
self.fc_2 = nn.Conv1d(hidden_dim, hidden_dim, 1)
self.fc_out = nn.Conv1d(hidden_dim, 1, 1)
self.actvn = nn.ReLU(True)
self.maxpool = nn.MaxPool3d(2)
self.partial_conv_in_bn = nn.InstanceNorm3d(16)
self.smpl_conv_in_bn = nn.InstanceNorm3d(4)
self.conv0_1_bn_fusion = nn.InstanceNorm3d(32)
self.conv0_1_bn = nn.InstanceNorm3d(32)
self.conv1_1_bn = nn.InstanceNorm3d(64)
self.conv2_1_bn = nn.InstanceNorm3d(128)
self.conv3_1_bn = nn.InstanceNorm3d(128)
self.conv4_1_bn = nn.InstanceNorm3d(128)
self.smplx = SMPLX()
voxel_param = read_smpl_constants(self.smplx.tedra_dir)
self.voxelization = Voxelization(
torch.ones_like(voxel_param["smpl_vertex_code"]),
torch.ones_like(voxel_param["smpl_face_code"]),
voxel_param["smpl_faces"],
voxel_param["smpl_tetras"],
volume_res=cfg.dataset.voxel_res,
sigma=0.05,
smooth_kernel_size=7,
batch_size=cfg.batch_size,
)
self.l1_loss = nn.SmoothL1Loss()
def forward(self, batch):
p = orthogonal(batch["samples_geo"].permute(0, 2, 1),
batch["calib"]).permute(0, 2, 1) #[2, 60000, 3]
x = batch["depth_voxels"] #[B, 128, 128, 128]
x = x.unsqueeze(1)
p_features = p.transpose(1, -1)
p = p.unsqueeze(1).unsqueeze(1)
# partial inputs feature extraction
feature_0_partial = F.grid_sample(x, p, padding_mode='border', align_corners=True)
net_partial = self.actvn(self.conv_in_partial(x))
net_partial = self.partial_conv_in_bn(net_partial)
net_partial = self.maxpool(net_partial) # out 64
# Feature fusion
net = self.actvn(self.conv_0_fusion(net_partial))
net = self.actvn(self.conv_0_1_fusion(net))
net = self.conv0_1_bn_fusion(net)
feature_1_fused = F.grid_sample(net, p, padding_mode='border', align_corners=True)
# net = self.maxpool(net) # out 64
net = self.actvn(self.conv_0(net))
net = self.actvn(self.conv_0_1(net))
net = self.conv0_1_bn(net)
feature_2 = F.grid_sample(net, p, padding_mode='border', align_corners=True)
net = self.maxpool(net) # out 32
net = self.actvn(self.conv_1(net))
net = self.actvn(self.conv_1_1(net))
net = self.conv1_1_bn(net)
feature_3 = F.grid_sample(net, p, padding_mode='border', align_corners=True)
net = self.maxpool(net) # out 16
net = self.actvn(self.conv_2(net))
net = self.actvn(self.conv_2_1(net))
net = self.conv2_1_bn(net)
feature_4 = F.grid_sample(net, p, padding_mode='border', align_corners=True)
net = self.maxpool(net) # out 8
net = self.actvn(self.conv_3(net))
net = self.actvn(self.conv_3_1(net))
net = self.conv3_1_bn(net)
feature_5 = F.grid_sample(net, p, padding_mode='border', align_corners=True)
net = self.maxpool(net) # out 4
net = self.actvn(self.conv_4(net))
net = self.actvn(self.conv_4_1(net))
net = self.conv4_1_bn(net)
feature_6 = F.grid_sample(net, p, padding_mode='border', align_corners=True) # out 2
# here every channel corresponse to one feature.
features = torch.cat((feature_0_partial, feature_1_fused, feature_2, feature_3, feature_4,
feature_5, feature_6),
dim=1) # (B, features, 1,7,sample_num)
shape = features.shape
features = torch.reshape(
features,
(shape[0], shape[1] * shape[3], shape[4])) # (B, featues_per_sample, samples_num)
# (B, featue_size, samples_num)
features = torch.cat((features, p_features), dim=1)
net = self.actvn(self.fc_0(features))
net = self.actvn(self.fc_1(net))
net = self.actvn(self.fc_2(net))
net = self.fc_out(net).squeeze(1)
return net
def compute_loss(self, prds, tgts):
loss = self.l1_loss(prds, tgts)
return loss