File size: 7,753 Bytes
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487ee6d
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487ee6d
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
da48dbe
 
 
 
 
fb140f6
 
da48dbe
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
fb140f6
 
da48dbe
 
 
 
 
 
 
 
 
 
 
fb140f6
 
da48dbe
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]

import torch
import torch.nn as nn
import torch.nn.functional as F

from lib.net.BasePIFuNet import BasePIFuNet
from lib.net.FBNet import GANLoss, IDMRFLoss, VGGLoss, define_D, define_G
from lib.net.net_util import init_net


class NormalNet(BasePIFuNet):
    """
    HG PIFu network uses Hourglass stacks as the image filter.
    It does the following:
        1. Compute image feature stacks and store it in self.im_feat_list
            self.im_feat_list[-1] is the last stack (output stack)
        2. Calculate calibration
        3. If training, it index on every intermediate stacks,
            If testing, it index on the last stack.
        4. Classification.
        5. During training, error is calculated on all stacks.
    """
    def __init__(self, cfg):

        super(NormalNet, self).__init__()

        self.opt = cfg.net

        self.F_losses = [item[0] for item in self.opt.front_losses]
        self.B_losses = [item[0] for item in self.opt.back_losses]
        self.F_losses_ratio = [item[1] for item in self.opt.front_losses]
        self.B_losses_ratio = [item[1] for item in self.opt.back_losses]
        self.ALL_losses = self.F_losses + self.B_losses

        if self.training:
            if 'vgg' in self.ALL_losses:
                self.vgg_loss = VGGLoss()
            if ('gan' in self.ALL_losses) or ('gan_feat' in self.ALL_losses):
                self.gan_loss = GANLoss(use_lsgan=True)
            if 'mrf' in self.ALL_losses:
                self.mrf_loss = IDMRFLoss()
            if 'l1' in self.ALL_losses:
                self.l1_loss = nn.SmoothL1Loss()

        self.in_nmlF = [
            item[0] for item in self.opt.in_nml if "_F" in item[0] or item[0] == "image"
        ]
        self.in_nmlB = [
            item[0] for item in self.opt.in_nml if "_B" in item[0] or item[0] == "image"
        ]
        self.in_nmlF_dim = sum([
            item[1] for item in self.opt.in_nml if "_F" in item[0] or item[0] == "image"
        ])
        self.in_nmlB_dim = sum([
            item[1] for item in self.opt.in_nml if "_B" in item[0] or item[0] == "image"
        ])

        self.netF = define_G(self.in_nmlF_dim, 3, 64, "global", 4, 9, 1, 3, "instance")
        self.netB = define_G(self.in_nmlB_dim, 3, 64, "global", 4, 9, 1, 3, "instance")

        if ('gan' in self.ALL_losses):
            self.netD = define_D(3, 64, 3, 'instance', False, 2, 'gan_feat' in self.ALL_losses)

        init_net(self)

    def forward(self, in_tensor):

        inF_list = []
        inB_list = []

        for name in self.in_nmlF:
            inF_list.append(in_tensor[name])
        for name in self.in_nmlB:
            inB_list.append(in_tensor[name])

        nmlF = self.netF(torch.cat(inF_list, dim=1))
        nmlB = self.netB(torch.cat(inB_list, dim=1))

        # ||normal|| == 1
        nmlF_normalized = nmlF / torch.norm(nmlF, dim=1, keepdim=True)
        nmlB_normalized = nmlB / torch.norm(nmlB, dim=1, keepdim=True)

        # output: float_arr [-1,1] with [B, C, H, W]
        mask = ((in_tensor["image"].abs().sum(dim=1, keepdim=True) != 0.0).detach().float())

        return nmlF_normalized * mask, nmlB_normalized * mask

    def get_norm_error(self, prd_F, prd_B, tgt):
        """calculate normal loss

        Args:
            pred (torch.tensor): [B, 6, 512, 512]
            tagt (torch.tensor): [B, 6, 512, 512]
        """

        tgt_F, tgt_B = tgt["normal_F"], tgt["normal_B"]

        # netF, netB, netD
        total_loss = {"netF": 0.0, "netB": 0.0}

        if 'l1' in self.F_losses:
            l1_F_loss = self.l1_loss(prd_F, tgt_F)
            total_loss["netF"] += self.F_losses_ratio[self.F_losses.index('l1')] * l1_F_loss
            total_loss["l1_F"] = self.F_losses_ratio[self.F_losses.index('l1')] * l1_F_loss
        if 'l1' in self.B_losses:
            l1_B_loss = self.l1_loss(prd_B, tgt_B)
            total_loss["netB"] += self.B_losses_ratio[self.B_losses.index('l1')] * l1_B_loss
            total_loss["l1_B"] = self.B_losses_ratio[self.B_losses.index('l1')] * l1_B_loss

        if 'vgg' in self.F_losses:
            vgg_F_loss = self.vgg_loss(prd_F, tgt_F)
            total_loss["netF"] += self.F_losses_ratio[self.F_losses.index('vgg')] * vgg_F_loss
            total_loss["vgg_F"] = self.F_losses_ratio[self.F_losses.index('vgg')] * vgg_F_loss
        if 'vgg' in self.B_losses:
            vgg_B_loss = self.vgg_loss(prd_B, tgt_B)
            total_loss["netB"] += self.B_losses_ratio[self.B_losses.index('vgg')] * vgg_B_loss
            total_loss["vgg_B"] = self.B_losses_ratio[self.B_losses.index('vgg')] * vgg_B_loss

        scale_factor = 0.5
        if 'mrf' in self.F_losses:
            mrf_F_loss = self.mrf_loss(
                F.interpolate(prd_F, scale_factor=scale_factor, mode='bicubic', align_corners=True),
                F.interpolate(tgt_F, scale_factor=scale_factor, mode='bicubic', align_corners=True)
            )
            total_loss["netF"] += self.F_losses_ratio[self.F_losses.index('mrf')] * mrf_F_loss
            total_loss["mrf_F"] = self.F_losses_ratio[self.F_losses.index('mrf')] * mrf_F_loss
        if 'mrf' in self.B_losses:
            mrf_B_loss = self.mrf_loss(
                F.interpolate(prd_B, scale_factor=scale_factor, mode='bicubic', align_corners=True),
                F.interpolate(tgt_B, scale_factor=scale_factor, mode='bicubic', align_corners=True)
            )
            total_loss["netB"] += self.B_losses_ratio[self.B_losses.index('mrf')] * mrf_B_loss
            total_loss["mrf_B"] = self.B_losses_ratio[self.B_losses.index('mrf')] * mrf_B_loss

        if 'gan' in self.ALL_losses:

            total_loss["netD"] = 0.0

            pred_fake = self.netD.forward(prd_B)
            pred_real = self.netD.forward(tgt_B)
            loss_D_fake = self.gan_loss(pred_fake, False)
            loss_D_real = self.gan_loss(pred_real, True)
            loss_G_fake = self.gan_loss(pred_fake, True)

            total_loss["netD"] += 0.5 * (loss_D_fake + loss_D_real
                                        ) * self.B_losses_ratio[self.B_losses.index('gan')]
            total_loss["D_fake"] = loss_D_fake * self.B_losses_ratio[self.B_losses.index('gan')]
            total_loss["D_real"] = loss_D_real * self.B_losses_ratio[self.B_losses.index('gan')]

            total_loss["netB"] += loss_G_fake * self.B_losses_ratio[self.B_losses.index('gan')]
            total_loss["G_fake"] = loss_G_fake * self.B_losses_ratio[self.B_losses.index('gan')]

            if 'gan_feat' in self.ALL_losses:
                loss_G_GAN_Feat = 0
                for i in range(2):
                    for j in range(len(pred_fake[i]) - 1):
                        loss_G_GAN_Feat += self.l1_loss(pred_fake[i][j], pred_real[i][j].detach())
                total_loss["netB"] += loss_G_GAN_Feat * self.B_losses_ratio[
                    self.B_losses.index('gan_feat')]
                total_loss["G_GAN_Feat"] = loss_G_GAN_Feat * self.B_losses_ratio[
                    self.B_losses.index('gan_feat')]

        return total_loss