File size: 25,879 Bytes
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
 
 
 
 
da48dbe
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
 
 
 
da48dbe
 
 
 
 
 
fb140f6
 
 
 
 
 
da48dbe
 
 
 
 
fb140f6
 
 
 
 
 
 
da48dbe
 
 
fb140f6
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
 
 
 
 
da48dbe
 
 
 
 
 
fb140f6
 
 
da48dbe
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
fb140f6
da48dbe
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
 
 
 
 
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
"""
Copyright (C) 2019 NVIDIA Corporation. Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu.
BSD License. All rights reserved. 

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.

THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL 
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE. 
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL 
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, 
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING 
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
"""
import torch
import torch.nn as nn
import functools
import numpy as np
import pytorch_lightning as pl
from torchvision import models
import torch.nn.functional as F


###############################################################################
# Functions
###############################################################################
def weights_init(m):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        m.weight.data.normal_(0.0, 0.02)
    elif classname.find("BatchNorm2d") != -1:
        m.weight.data.normal_(1.0, 0.02)
        m.bias.data.fill_(0)


def get_norm_layer(norm_type="instance"):
    if norm_type == "batch":
        norm_layer = functools.partial(nn.BatchNorm2d, affine=True)
    elif norm_type == "instance":
        norm_layer = functools.partial(nn.InstanceNorm2d, affine=False)
    else:
        raise NotImplementedError("normalization layer [%s] is not found" % norm_type)
    return norm_layer


def define_G(
    input_nc,
    output_nc,
    ngf,
    netG,
    n_downsample_global=3,
    n_blocks_global=9,
    n_local_enhancers=1,
    n_blocks_local=3,
    norm="instance",
    gpu_ids=[],
    last_op=nn.Tanh(),
):
    norm_layer = get_norm_layer(norm_type=norm)
    if netG == "global":
        netG = GlobalGenerator(
            input_nc,
            output_nc,
            ngf,
            n_downsample_global,
            n_blocks_global,
            norm_layer,
            last_op=last_op,
        )
    elif netG == "local":
        netG = LocalEnhancer(
            input_nc,
            output_nc,
            ngf,
            n_downsample_global,
            n_blocks_global,
            n_local_enhancers,
            n_blocks_local,
            norm_layer,
        )
    elif netG == "encoder":
        netG = Encoder(input_nc, output_nc, ngf, n_downsample_global, norm_layer)
    else:
        raise ("generator not implemented!")
    # print(netG)
    if len(gpu_ids) > 0:
        assert torch.cuda.is_available()
        netG.cuda(gpu_ids[0])
    netG.apply(weights_init)
    return netG


def define_D(
    input_nc,
    ndf,
    n_layers_D,
    norm='instance',
    use_sigmoid=False,
    num_D=1,
    getIntermFeat=False,
    gpu_ids=[]
):
    norm_layer = get_norm_layer(norm_type=norm)
    netD = MultiscaleDiscriminator(
        input_nc, ndf, n_layers_D, norm_layer, use_sigmoid, num_D, getIntermFeat
    )
    if len(gpu_ids) > 0:
        assert (torch.cuda.is_available())
        netD.cuda(gpu_ids[0])
    netD.apply(weights_init)
    return netD


def print_network(net):
    if isinstance(net, list):
        net = net[0]
    num_params = 0
    for param in net.parameters():
        num_params += param.numel()
    print(net)
    print("Total number of parameters: %d" % num_params)


##############################################################################
# Generator
##############################################################################
class LocalEnhancer(pl.LightningModule):
    def __init__(
        self,
        input_nc,
        output_nc,
        ngf=32,
        n_downsample_global=3,
        n_blocks_global=9,
        n_local_enhancers=1,
        n_blocks_local=3,
        norm_layer=nn.BatchNorm2d,
        padding_type="reflect",
    ):
        super(LocalEnhancer, self).__init__()
        self.n_local_enhancers = n_local_enhancers

        ###### global generator model #####
        ngf_global = ngf * (2**n_local_enhancers)
        model_global = GlobalGenerator(
            input_nc,
            output_nc,
            ngf_global,
            n_downsample_global,
            n_blocks_global,
            norm_layer,
        ).model
        model_global = [
            model_global[i] for i in range(len(model_global) - 3)
        ]    # get rid of final convolution layers
        self.model = nn.Sequential(*model_global)

        ###### local enhancer layers #####
        for n in range(1, n_local_enhancers + 1):
            # downsample
            ngf_global = ngf * (2**(n_local_enhancers - n))
            model_downsample = [
                nn.ReflectionPad2d(3),
                nn.Conv2d(input_nc, ngf_global, kernel_size=7, padding=0),
                norm_layer(ngf_global),
                nn.ReLU(True),
                nn.Conv2d(ngf_global, ngf_global * 2, kernel_size=3, stride=2, padding=1),
                norm_layer(ngf_global * 2),
                nn.ReLU(True),
            ]
            # residual blocks
            model_upsample = []
            for i in range(n_blocks_local):
                model_upsample += [
                    ResnetBlock(ngf_global * 2, padding_type=padding_type, norm_layer=norm_layer)
                ]

            # upsample
            model_upsample += [
                nn.ConvTranspose2d(
                    ngf_global * 2,
                    ngf_global,
                    kernel_size=3,
                    stride=2,
                    padding=1,
                    output_padding=1,
                ),
                norm_layer(ngf_global),
                nn.ReLU(True),
            ]

            # final convolution
            if n == n_local_enhancers:
                model_upsample += [
                    nn.ReflectionPad2d(3),
                    nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0),
                    nn.Tanh(),
                ]

            setattr(self, "model" + str(n) + "_1", nn.Sequential(*model_downsample))
            setattr(self, "model" + str(n) + "_2", nn.Sequential(*model_upsample))

        self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False)

    def forward(self, input):
        # create input pyramid
        input_downsampled = [input]
        for i in range(self.n_local_enhancers):
            input_downsampled.append(self.downsample(input_downsampled[-1]))

        # output at coarest level
        output_prev = self.model(input_downsampled[-1])
        # build up one layer at a time
        for n_local_enhancers in range(1, self.n_local_enhancers + 1):
            model_downsample = getattr(self, "model" + str(n_local_enhancers) + "_1")
            model_upsample = getattr(self, "model" + str(n_local_enhancers) + "_2")
            input_i = input_downsampled[self.n_local_enhancers - n_local_enhancers]
            output_prev = model_upsample(model_downsample(input_i) + output_prev)
        return output_prev


class GlobalGenerator(pl.LightningModule):
    def __init__(
        self,
        input_nc,
        output_nc,
        ngf=64,
        n_downsampling=3,
        n_blocks=9,
        norm_layer=nn.BatchNorm2d,
        padding_type="reflect",
        last_op=nn.Tanh(),
    ):
        assert n_blocks >= 0
        super(GlobalGenerator, self).__init__()
        activation = nn.ReLU(True)

        model = [
            nn.ReflectionPad2d(3),
            nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0),
            norm_layer(ngf),
            activation,
        ]
        # downsample
        for i in range(n_downsampling):
            mult = 2**i
            model += [
                nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
                norm_layer(ngf * mult * 2),
                activation,
            ]

        # resnet blocks
        mult = 2**n_downsampling
        for i in range(n_blocks):
            model += [
                ResnetBlock(
                    ngf * mult,
                    padding_type=padding_type,
                    activation=activation,
                    norm_layer=norm_layer,
                )
            ]

        # upsample
        for i in range(n_downsampling):
            mult = 2**(n_downsampling - i)
            model += [
                nn.ConvTranspose2d(
                    ngf * mult,
                    int(ngf * mult / 2),
                    kernel_size=3,
                    stride=2,
                    padding=1,
                    output_padding=1,
                ),
                norm_layer(int(ngf * mult / 2)),
                activation,
            ]
        model += [
            nn.ReflectionPad2d(3),
            nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0),
        ]
        if last_op is not None:
            model += [last_op]
        self.model = nn.Sequential(*model)

    def forward(self, input):
        return self.model(input)


# Defines the PatchGAN discriminator with the specified arguments.
class NLayerDiscriminator(nn.Module):
    def __init__(
        self,
        input_nc,
        ndf=64,
        n_layers=3,
        norm_layer=nn.BatchNorm2d,
        use_sigmoid=False,
        getIntermFeat=False
    ):
        super(NLayerDiscriminator, self).__init__()
        self.getIntermFeat = getIntermFeat
        self.n_layers = n_layers

        kw = 4
        padw = int(np.ceil((kw - 1.0) / 2))
        sequence = [
            [
                nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
                nn.LeakyReLU(0.2, True)
            ]
        ]

        nf = ndf
        for n in range(1, n_layers):
            nf_prev = nf
            nf = min(nf * 2, 512)
            sequence += [
                [
                    nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw),
                    norm_layer(nf),
                    nn.LeakyReLU(0.2, True)
                ]
            ]

        nf_prev = nf
        nf = min(nf * 2, 512)
        sequence += [
            [
                nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw),
                norm_layer(nf),
                nn.LeakyReLU(0.2, True)
            ]
        ]

        sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]

        if use_sigmoid:
            sequence += [[nn.Sigmoid()]]

        if getIntermFeat:
            for n in range(len(sequence)):
                setattr(self, 'model' + str(n), nn.Sequential(*sequence[n]))
        else:
            sequence_stream = []
            for n in range(len(sequence)):
                sequence_stream += sequence[n]
            self.model = nn.Sequential(*sequence_stream)

    def forward(self, input):
        if self.getIntermFeat:
            res = [input]
            for n in range(self.n_layers + 2):
                model = getattr(self, 'model' + str(n))
                res.append(model(res[-1]))
            return res[1:]
        else:
            return self.model(input)


class MultiscaleDiscriminator(pl.LightningModule):
    def __init__(
        self,
        input_nc,
        ndf=64,
        n_layers=3,
        norm_layer=nn.BatchNorm2d,
        use_sigmoid=False,
        num_D=3,
        getIntermFeat=False
    ):
        super(MultiscaleDiscriminator, self).__init__()
        self.num_D = num_D
        self.n_layers = n_layers
        self.getIntermFeat = getIntermFeat

        for i in range(num_D):
            netD = NLayerDiscriminator(
                input_nc, ndf, n_layers, norm_layer, use_sigmoid, getIntermFeat
            )
            if getIntermFeat:
                for j in range(n_layers + 2):
                    setattr(
                        self, 'scale' + str(i) + '_layer' + str(j), getattr(netD, 'model' + str(j))
                    )
            else:
                setattr(self, 'layer' + str(i), netD.model)

        self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False)

    def singleD_forward(self, model, input):
        if self.getIntermFeat:
            result = [input]
            for i in range(len(model)):
                result.append(model[i](result[-1]))
            return result[1:]
        else:
            return [model(input)]

    def forward(self, input):
        num_D = self.num_D
        result = []
        input_downsampled = input.clone()
        for i in range(num_D):
            if self.getIntermFeat:
                model = [
                    getattr(self, 'scale' + str(num_D - 1 - i) + '_layer' + str(j))
                    for j in range(self.n_layers + 2)
                ]
            else:
                model = getattr(self, 'layer' + str(num_D - 1 - i))
            result.append(self.singleD_forward(model, input_downsampled))
            if i != (num_D - 1):
                input_downsampled = self.downsample(input_downsampled)
        return result


# Define a resnet block
class ResnetBlock(pl.LightningModule):
    def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False):
        super(ResnetBlock, self).__init__()
        self.conv_block = self.build_conv_block(
            dim, padding_type, norm_layer, activation, use_dropout
        )

    def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout):
        conv_block = []
        p = 0
        if padding_type == "reflect":
            conv_block += [nn.ReflectionPad2d(1)]
        elif padding_type == "replicate":
            conv_block += [nn.ReplicationPad2d(1)]
        elif padding_type == "zero":
            p = 1
        else:
            raise NotImplementedError("padding [%s] is not implemented" % padding_type)

        conv_block += [
            nn.Conv2d(dim, dim, kernel_size=3, padding=p),
            norm_layer(dim),
            activation,
        ]
        if use_dropout:
            conv_block += [nn.Dropout(0.5)]

        p = 0
        if padding_type == "reflect":
            conv_block += [nn.ReflectionPad2d(1)]
        elif padding_type == "replicate":
            conv_block += [nn.ReplicationPad2d(1)]
        elif padding_type == "zero":
            p = 1
        else:
            raise NotImplementedError("padding [%s] is not implemented" % padding_type)
        conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), norm_layer(dim)]

        return nn.Sequential(*conv_block)

    def forward(self, x):
        out = x + self.conv_block(x)
        return out


class Encoder(pl.LightningModule):
    def __init__(self, input_nc, output_nc, ngf=32, n_downsampling=4, norm_layer=nn.BatchNorm2d):
        super(Encoder, self).__init__()
        self.output_nc = output_nc

        model = [
            nn.ReflectionPad2d(3),
            nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0),
            norm_layer(ngf),
            nn.ReLU(True),
        ]
        # downsample
        for i in range(n_downsampling):
            mult = 2**i
            model += [
                nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
                norm_layer(ngf * mult * 2),
                nn.ReLU(True),
            ]

        # upsample
        for i in range(n_downsampling):
            mult = 2**(n_downsampling - i)
            model += [
                nn.ConvTranspose2d(
                    ngf * mult,
                    int(ngf * mult / 2),
                    kernel_size=3,
                    stride=2,
                    padding=1,
                    output_padding=1,
                ),
                norm_layer(int(ngf * mult / 2)),
                nn.ReLU(True),
            ]

        model += [
            nn.ReflectionPad2d(3),
            nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0),
            nn.Tanh(),
        ]
        self.model = nn.Sequential(*model)

    def forward(self, input, inst):
        outputs = self.model(input)

        # instance-wise average pooling
        outputs_mean = outputs.clone()
        inst_list = np.unique(inst.cpu().numpy().astype(int))
        for i in inst_list:
            for b in range(input.size()[0]):
                indices = (inst[b:b + 1] == int(i)).nonzero()    # n x 4
                for j in range(self.output_nc):
                    output_ins = outputs[indices[:, 0] + b, indices[:, 1] + j, indices[:, 2],
                                         indices[:, 3], ]
                    mean_feat = torch.mean(output_ins).expand_as(output_ins)
                    outputs_mean[indices[:, 0] + b, indices[:, 1] + j, indices[:, 2],
                                 indices[:, 3], ] = mean_feat
        return outputs_mean


class Vgg19(nn.Module):
    def __init__(self, requires_grad=False):
        super(Vgg19, self).__init__()
        vgg_pretrained_features = models.vgg19(weights=models.VGG19_Weights.DEFAULT).features
        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        self.slice5 = torch.nn.Sequential()
        for x in range(2):
            self.slice1.add_module(str(x), vgg_pretrained_features[x])
        for x in range(2, 7):
            self.slice2.add_module(str(x), vgg_pretrained_features[x])
        for x in range(7, 12):
            self.slice3.add_module(str(x), vgg_pretrained_features[x])
        for x in range(12, 21):
            self.slice4.add_module(str(x), vgg_pretrained_features[x])
        for x in range(21, 30):
            self.slice5.add_module(str(x), vgg_pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, X):
        h_relu1 = self.slice1(X)
        h_relu2 = self.slice2(h_relu1)
        h_relu3 = self.slice3(h_relu2)
        h_relu4 = self.slice4(h_relu3)
        h_relu5 = self.slice5(h_relu4)
        out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
        return out


class VGG19FeatLayer(nn.Module):
    def __init__(self):
        super(VGG19FeatLayer, self).__init__()
        self.vgg19 = models.vgg19(weights=models.VGG19_Weights.DEFAULT).features.eval()

        self.register_buffer("mean", torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
        self.register_buffer("std", torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))

    def forward(self, x):

        out = {}
        x = x - self.mean
        x = x / self.std
        ci = 1
        ri = 0
        for layer in self.vgg19.children():
            if isinstance(layer, nn.Conv2d):
                ri += 1
                name = 'conv{}_{}'.format(ci, ri)
            elif isinstance(layer, nn.ReLU):
                ri += 1
                name = 'relu{}_{}'.format(ci, ri)
                layer = nn.ReLU(inplace=False)
            elif isinstance(layer, nn.MaxPool2d):
                ri = 0
                name = 'pool_{}'.format(ci)
                ci += 1
            elif isinstance(layer, nn.BatchNorm2d):
                name = 'bn_{}'.format(ci)
            else:
                raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__))
            x = layer(x)
            out[name] = x
        # print([x for x in out])
        return out


class VGGLoss(pl.LightningModule):
    def __init__(self):
        super(VGGLoss, self).__init__()
        self.vgg = Vgg19().eval()
        self.criterion = nn.L1Loss()
        self.weights = [1.0 / 32, 1.0 / 16, 1.0 / 8, 1.0 / 4, 1.0]

    def forward(self, x, y):
        x_vgg, y_vgg = self.vgg(x), self.vgg(y)
        loss = 0
        for i in range(len(x_vgg)):
            loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach())
        return loss


class GANLoss(pl.LightningModule):
    def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0):
        super(GANLoss, self).__init__()
        self.real_label = target_real_label
        self.fake_label = target_fake_label
        self.real_label_var = None
        self.fake_label_var = None
        self.tensor = torch.cuda.FloatTensor
        if use_lsgan:
            self.loss = nn.MSELoss()
        else:
            self.loss = nn.BCELoss()

    def get_target_tensor(self, input, target_is_real):
        target_tensor = None
        if target_is_real:
            create_label = (
                (self.real_label_var is None) or (self.real_label_var.numel() != input.numel())
            )
            if create_label:
                real_tensor = self.tensor(input.size()).fill_(self.real_label)
                self.real_label_var = real_tensor
                self.real_label_var.requires_grad = False
            target_tensor = self.real_label_var
        else:
            create_label = (
                (self.fake_label_var is None) or (self.fake_label_var.numel() != input.numel())
            )
            if create_label:
                fake_tensor = self.tensor(input.size()).fill_(self.fake_label)
                self.fake_label_var = fake_tensor
                self.fake_label_var.requires_grad = False
            target_tensor = self.fake_label_var
        return target_tensor

    def __call__(self, input, target_is_real):
        if isinstance(input[0], list):
            loss = 0
            for input_i in input:
                pred = input_i[-1]
                target_tensor = self.get_target_tensor(pred, target_is_real)
                loss += self.loss(pred, target_tensor)
            return loss
        else:
            target_tensor = self.get_target_tensor(input[-1], target_is_real)
            return self.loss(input[-1], target_tensor)


class IDMRFLoss(pl.LightningModule):
    def __init__(self, featlayer=VGG19FeatLayer):
        super(IDMRFLoss, self).__init__()
        self.featlayer = featlayer()
        self.feat_style_layers = {'relu3_2': 1.0, 'relu4_2': 1.0}
        self.feat_content_layers = {'relu4_2': 1.0}
        self.bias = 1.0
        self.nn_stretch_sigma = 0.5
        self.lambda_style = 1.0
        self.lambda_content = 1.0

    def sum_normalize(self, featmaps):
        reduce_sum = torch.sum(featmaps, dim=1, keepdim=True)
        return featmaps / reduce_sum

    def patch_extraction(self, featmaps):
        patch_size = 1
        patch_stride = 1
        patches_as_depth_vectors = featmaps.unfold(2, patch_size, patch_stride).unfold(
            3, patch_size, patch_stride
        )
        self.patches_OIHW = patches_as_depth_vectors.permute(0, 2, 3, 1, 4, 5)
        dims = self.patches_OIHW.size()
        self.patches_OIHW = self.patches_OIHW.view(-1, dims[3], dims[4], dims[5])
        return self.patches_OIHW

    def compute_relative_distances(self, cdist):
        epsilon = 1e-5
        div = torch.min(cdist, dim=1, keepdim=True)[0]
        relative_dist = cdist / (div + epsilon)
        return relative_dist

    def exp_norm_relative_dist(self, relative_dist):
        scaled_dist = relative_dist
        dist_before_norm = torch.exp((self.bias - scaled_dist) / self.nn_stretch_sigma)
        self.cs_NCHW = self.sum_normalize(dist_before_norm)
        return self.cs_NCHW

    def mrf_loss(self, gen, tar):
        meanT = torch.mean(tar, 1, keepdim=True)
        gen_feats, tar_feats = gen - meanT, tar - meanT

        gen_feats_norm = torch.norm(gen_feats, p=2, dim=1, keepdim=True)
        tar_feats_norm = torch.norm(tar_feats, p=2, dim=1, keepdim=True)

        gen_normalized = gen_feats / gen_feats_norm
        tar_normalized = tar_feats / tar_feats_norm

        cosine_dist_l = []
        BatchSize = tar.size(0)

        for i in range(BatchSize):
            tar_feat_i = tar_normalized[i:i + 1, :, :, :]
            gen_feat_i = gen_normalized[i:i + 1, :, :, :]
            patches_OIHW = self.patch_extraction(tar_feat_i)

            cosine_dist_i = F.conv2d(gen_feat_i, patches_OIHW)
            cosine_dist_l.append(cosine_dist_i)
        cosine_dist = torch.cat(cosine_dist_l, dim=0)
        cosine_dist_zero_2_one = -(cosine_dist - 1) / 2
        relative_dist = self.compute_relative_distances(cosine_dist_zero_2_one)
        rela_dist = self.exp_norm_relative_dist(relative_dist)
        dims_div_mrf = rela_dist.size()
        k_max_nc = torch.max(rela_dist.view(dims_div_mrf[0], dims_div_mrf[1], -1), dim=2)[0]
        div_mrf = torch.mean(k_max_nc, dim=1)
        div_mrf_sum = -torch.log(div_mrf)
        div_mrf_sum = torch.sum(div_mrf_sum)
        return div_mrf_sum

    def forward(self, gen, tar):
        ## gen: [bz,3,h,w] rgb [0,1]
        gen_vgg_feats = self.featlayer(gen)
        tar_vgg_feats = self.featlayer(tar)
        style_loss_list = [
            self.feat_style_layers[layer] *
            self.mrf_loss(gen_vgg_feats[layer], tar_vgg_feats[layer])
            for layer in self.feat_style_layers
        ]
        self.style_loss = functools.reduce(lambda x, y: x + y, style_loss_list) * self.lambda_style

        content_loss_list = [
            self.feat_content_layers[layer] *
            self.mrf_loss(gen_vgg_feats[layer], tar_vgg_feats[layer])
            for layer in self.feat_content_layers
        ]
        self.content_loss = functools.reduce(
            lambda x, y: x + y, content_loss_list
        ) * self.lambda_content

        return self.style_loss + self.content_loss