Spaces:
Runtime error
Runtime error
File size: 25,879 Bytes
da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 |
"""
Copyright (C) 2019 NVIDIA Corporation. Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu.
BSD License. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
"""
import torch
import torch.nn as nn
import functools
import numpy as np
import pytorch_lightning as pl
from torchvision import models
import torch.nn.functional as F
###############################################################################
# Functions
###############################################################################
def weights_init(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find("BatchNorm2d") != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def get_norm_layer(norm_type="instance"):
if norm_type == "batch":
norm_layer = functools.partial(nn.BatchNorm2d, affine=True)
elif norm_type == "instance":
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False)
else:
raise NotImplementedError("normalization layer [%s] is not found" % norm_type)
return norm_layer
def define_G(
input_nc,
output_nc,
ngf,
netG,
n_downsample_global=3,
n_blocks_global=9,
n_local_enhancers=1,
n_blocks_local=3,
norm="instance",
gpu_ids=[],
last_op=nn.Tanh(),
):
norm_layer = get_norm_layer(norm_type=norm)
if netG == "global":
netG = GlobalGenerator(
input_nc,
output_nc,
ngf,
n_downsample_global,
n_blocks_global,
norm_layer,
last_op=last_op,
)
elif netG == "local":
netG = LocalEnhancer(
input_nc,
output_nc,
ngf,
n_downsample_global,
n_blocks_global,
n_local_enhancers,
n_blocks_local,
norm_layer,
)
elif netG == "encoder":
netG = Encoder(input_nc, output_nc, ngf, n_downsample_global, norm_layer)
else:
raise ("generator not implemented!")
# print(netG)
if len(gpu_ids) > 0:
assert torch.cuda.is_available()
netG.cuda(gpu_ids[0])
netG.apply(weights_init)
return netG
def define_D(
input_nc,
ndf,
n_layers_D,
norm='instance',
use_sigmoid=False,
num_D=1,
getIntermFeat=False,
gpu_ids=[]
):
norm_layer = get_norm_layer(norm_type=norm)
netD = MultiscaleDiscriminator(
input_nc, ndf, n_layers_D, norm_layer, use_sigmoid, num_D, getIntermFeat
)
if len(gpu_ids) > 0:
assert (torch.cuda.is_available())
netD.cuda(gpu_ids[0])
netD.apply(weights_init)
return netD
def print_network(net):
if isinstance(net, list):
net = net[0]
num_params = 0
for param in net.parameters():
num_params += param.numel()
print(net)
print("Total number of parameters: %d" % num_params)
##############################################################################
# Generator
##############################################################################
class LocalEnhancer(pl.LightningModule):
def __init__(
self,
input_nc,
output_nc,
ngf=32,
n_downsample_global=3,
n_blocks_global=9,
n_local_enhancers=1,
n_blocks_local=3,
norm_layer=nn.BatchNorm2d,
padding_type="reflect",
):
super(LocalEnhancer, self).__init__()
self.n_local_enhancers = n_local_enhancers
###### global generator model #####
ngf_global = ngf * (2**n_local_enhancers)
model_global = GlobalGenerator(
input_nc,
output_nc,
ngf_global,
n_downsample_global,
n_blocks_global,
norm_layer,
).model
model_global = [
model_global[i] for i in range(len(model_global) - 3)
] # get rid of final convolution layers
self.model = nn.Sequential(*model_global)
###### local enhancer layers #####
for n in range(1, n_local_enhancers + 1):
# downsample
ngf_global = ngf * (2**(n_local_enhancers - n))
model_downsample = [
nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, ngf_global, kernel_size=7, padding=0),
norm_layer(ngf_global),
nn.ReLU(True),
nn.Conv2d(ngf_global, ngf_global * 2, kernel_size=3, stride=2, padding=1),
norm_layer(ngf_global * 2),
nn.ReLU(True),
]
# residual blocks
model_upsample = []
for i in range(n_blocks_local):
model_upsample += [
ResnetBlock(ngf_global * 2, padding_type=padding_type, norm_layer=norm_layer)
]
# upsample
model_upsample += [
nn.ConvTranspose2d(
ngf_global * 2,
ngf_global,
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
),
norm_layer(ngf_global),
nn.ReLU(True),
]
# final convolution
if n == n_local_enhancers:
model_upsample += [
nn.ReflectionPad2d(3),
nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0),
nn.Tanh(),
]
setattr(self, "model" + str(n) + "_1", nn.Sequential(*model_downsample))
setattr(self, "model" + str(n) + "_2", nn.Sequential(*model_upsample))
self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False)
def forward(self, input):
# create input pyramid
input_downsampled = [input]
for i in range(self.n_local_enhancers):
input_downsampled.append(self.downsample(input_downsampled[-1]))
# output at coarest level
output_prev = self.model(input_downsampled[-1])
# build up one layer at a time
for n_local_enhancers in range(1, self.n_local_enhancers + 1):
model_downsample = getattr(self, "model" + str(n_local_enhancers) + "_1")
model_upsample = getattr(self, "model" + str(n_local_enhancers) + "_2")
input_i = input_downsampled[self.n_local_enhancers - n_local_enhancers]
output_prev = model_upsample(model_downsample(input_i) + output_prev)
return output_prev
class GlobalGenerator(pl.LightningModule):
def __init__(
self,
input_nc,
output_nc,
ngf=64,
n_downsampling=3,
n_blocks=9,
norm_layer=nn.BatchNorm2d,
padding_type="reflect",
last_op=nn.Tanh(),
):
assert n_blocks >= 0
super(GlobalGenerator, self).__init__()
activation = nn.ReLU(True)
model = [
nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0),
norm_layer(ngf),
activation,
]
# downsample
for i in range(n_downsampling):
mult = 2**i
model += [
nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
norm_layer(ngf * mult * 2),
activation,
]
# resnet blocks
mult = 2**n_downsampling
for i in range(n_blocks):
model += [
ResnetBlock(
ngf * mult,
padding_type=padding_type,
activation=activation,
norm_layer=norm_layer,
)
]
# upsample
for i in range(n_downsampling):
mult = 2**(n_downsampling - i)
model += [
nn.ConvTranspose2d(
ngf * mult,
int(ngf * mult / 2),
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
),
norm_layer(int(ngf * mult / 2)),
activation,
]
model += [
nn.ReflectionPad2d(3),
nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0),
]
if last_op is not None:
model += [last_op]
self.model = nn.Sequential(*model)
def forward(self, input):
return self.model(input)
# Defines the PatchGAN discriminator with the specified arguments.
class NLayerDiscriminator(nn.Module):
def __init__(
self,
input_nc,
ndf=64,
n_layers=3,
norm_layer=nn.BatchNorm2d,
use_sigmoid=False,
getIntermFeat=False
):
super(NLayerDiscriminator, self).__init__()
self.getIntermFeat = getIntermFeat
self.n_layers = n_layers
kw = 4
padw = int(np.ceil((kw - 1.0) / 2))
sequence = [
[
nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
nn.LeakyReLU(0.2, True)
]
]
nf = ndf
for n in range(1, n_layers):
nf_prev = nf
nf = min(nf * 2, 512)
sequence += [
[
nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw),
norm_layer(nf),
nn.LeakyReLU(0.2, True)
]
]
nf_prev = nf
nf = min(nf * 2, 512)
sequence += [
[
nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw),
norm_layer(nf),
nn.LeakyReLU(0.2, True)
]
]
sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]
if use_sigmoid:
sequence += [[nn.Sigmoid()]]
if getIntermFeat:
for n in range(len(sequence)):
setattr(self, 'model' + str(n), nn.Sequential(*sequence[n]))
else:
sequence_stream = []
for n in range(len(sequence)):
sequence_stream += sequence[n]
self.model = nn.Sequential(*sequence_stream)
def forward(self, input):
if self.getIntermFeat:
res = [input]
for n in range(self.n_layers + 2):
model = getattr(self, 'model' + str(n))
res.append(model(res[-1]))
return res[1:]
else:
return self.model(input)
class MultiscaleDiscriminator(pl.LightningModule):
def __init__(
self,
input_nc,
ndf=64,
n_layers=3,
norm_layer=nn.BatchNorm2d,
use_sigmoid=False,
num_D=3,
getIntermFeat=False
):
super(MultiscaleDiscriminator, self).__init__()
self.num_D = num_D
self.n_layers = n_layers
self.getIntermFeat = getIntermFeat
for i in range(num_D):
netD = NLayerDiscriminator(
input_nc, ndf, n_layers, norm_layer, use_sigmoid, getIntermFeat
)
if getIntermFeat:
for j in range(n_layers + 2):
setattr(
self, 'scale' + str(i) + '_layer' + str(j), getattr(netD, 'model' + str(j))
)
else:
setattr(self, 'layer' + str(i), netD.model)
self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False)
def singleD_forward(self, model, input):
if self.getIntermFeat:
result = [input]
for i in range(len(model)):
result.append(model[i](result[-1]))
return result[1:]
else:
return [model(input)]
def forward(self, input):
num_D = self.num_D
result = []
input_downsampled = input.clone()
for i in range(num_D):
if self.getIntermFeat:
model = [
getattr(self, 'scale' + str(num_D - 1 - i) + '_layer' + str(j))
for j in range(self.n_layers + 2)
]
else:
model = getattr(self, 'layer' + str(num_D - 1 - i))
result.append(self.singleD_forward(model, input_downsampled))
if i != (num_D - 1):
input_downsampled = self.downsample(input_downsampled)
return result
# Define a resnet block
class ResnetBlock(pl.LightningModule):
def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False):
super(ResnetBlock, self).__init__()
self.conv_block = self.build_conv_block(
dim, padding_type, norm_layer, activation, use_dropout
)
def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout):
conv_block = []
p = 0
if padding_type == "reflect":
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == "replicate":
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == "zero":
p = 1
else:
raise NotImplementedError("padding [%s] is not implemented" % padding_type)
conv_block += [
nn.Conv2d(dim, dim, kernel_size=3, padding=p),
norm_layer(dim),
activation,
]
if use_dropout:
conv_block += [nn.Dropout(0.5)]
p = 0
if padding_type == "reflect":
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == "replicate":
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == "zero":
p = 1
else:
raise NotImplementedError("padding [%s] is not implemented" % padding_type)
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), norm_layer(dim)]
return nn.Sequential(*conv_block)
def forward(self, x):
out = x + self.conv_block(x)
return out
class Encoder(pl.LightningModule):
def __init__(self, input_nc, output_nc, ngf=32, n_downsampling=4, norm_layer=nn.BatchNorm2d):
super(Encoder, self).__init__()
self.output_nc = output_nc
model = [
nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0),
norm_layer(ngf),
nn.ReLU(True),
]
# downsample
for i in range(n_downsampling):
mult = 2**i
model += [
nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
norm_layer(ngf * mult * 2),
nn.ReLU(True),
]
# upsample
for i in range(n_downsampling):
mult = 2**(n_downsampling - i)
model += [
nn.ConvTranspose2d(
ngf * mult,
int(ngf * mult / 2),
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
),
norm_layer(int(ngf * mult / 2)),
nn.ReLU(True),
]
model += [
nn.ReflectionPad2d(3),
nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0),
nn.Tanh(),
]
self.model = nn.Sequential(*model)
def forward(self, input, inst):
outputs = self.model(input)
# instance-wise average pooling
outputs_mean = outputs.clone()
inst_list = np.unique(inst.cpu().numpy().astype(int))
for i in inst_list:
for b in range(input.size()[0]):
indices = (inst[b:b + 1] == int(i)).nonzero() # n x 4
for j in range(self.output_nc):
output_ins = outputs[indices[:, 0] + b, indices[:, 1] + j, indices[:, 2],
indices[:, 3], ]
mean_feat = torch.mean(output_ins).expand_as(output_ins)
outputs_mean[indices[:, 0] + b, indices[:, 1] + j, indices[:, 2],
indices[:, 3], ] = mean_feat
return outputs_mean
class Vgg19(nn.Module):
def __init__(self, requires_grad=False):
super(Vgg19, self).__init__()
vgg_pretrained_features = models.vgg19(weights=models.VGG19_Weights.DEFAULT).features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
for x in range(2):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(2, 7):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(7, 12):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(12, 21):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
for x in range(21, 30):
self.slice5.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
h_relu1 = self.slice1(X)
h_relu2 = self.slice2(h_relu1)
h_relu3 = self.slice3(h_relu2)
h_relu4 = self.slice4(h_relu3)
h_relu5 = self.slice5(h_relu4)
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
return out
class VGG19FeatLayer(nn.Module):
def __init__(self):
super(VGG19FeatLayer, self).__init__()
self.vgg19 = models.vgg19(weights=models.VGG19_Weights.DEFAULT).features.eval()
self.register_buffer("mean", torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
self.register_buffer("std", torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
def forward(self, x):
out = {}
x = x - self.mean
x = x / self.std
ci = 1
ri = 0
for layer in self.vgg19.children():
if isinstance(layer, nn.Conv2d):
ri += 1
name = 'conv{}_{}'.format(ci, ri)
elif isinstance(layer, nn.ReLU):
ri += 1
name = 'relu{}_{}'.format(ci, ri)
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
ri = 0
name = 'pool_{}'.format(ci)
ci += 1
elif isinstance(layer, nn.BatchNorm2d):
name = 'bn_{}'.format(ci)
else:
raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__))
x = layer(x)
out[name] = x
# print([x for x in out])
return out
class VGGLoss(pl.LightningModule):
def __init__(self):
super(VGGLoss, self).__init__()
self.vgg = Vgg19().eval()
self.criterion = nn.L1Loss()
self.weights = [1.0 / 32, 1.0 / 16, 1.0 / 8, 1.0 / 4, 1.0]
def forward(self, x, y):
x_vgg, y_vgg = self.vgg(x), self.vgg(y)
loss = 0
for i in range(len(x_vgg)):
loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach())
return loss
class GANLoss(pl.LightningModule):
def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0):
super(GANLoss, self).__init__()
self.real_label = target_real_label
self.fake_label = target_fake_label
self.real_label_var = None
self.fake_label_var = None
self.tensor = torch.cuda.FloatTensor
if use_lsgan:
self.loss = nn.MSELoss()
else:
self.loss = nn.BCELoss()
def get_target_tensor(self, input, target_is_real):
target_tensor = None
if target_is_real:
create_label = (
(self.real_label_var is None) or (self.real_label_var.numel() != input.numel())
)
if create_label:
real_tensor = self.tensor(input.size()).fill_(self.real_label)
self.real_label_var = real_tensor
self.real_label_var.requires_grad = False
target_tensor = self.real_label_var
else:
create_label = (
(self.fake_label_var is None) or (self.fake_label_var.numel() != input.numel())
)
if create_label:
fake_tensor = self.tensor(input.size()).fill_(self.fake_label)
self.fake_label_var = fake_tensor
self.fake_label_var.requires_grad = False
target_tensor = self.fake_label_var
return target_tensor
def __call__(self, input, target_is_real):
if isinstance(input[0], list):
loss = 0
for input_i in input:
pred = input_i[-1]
target_tensor = self.get_target_tensor(pred, target_is_real)
loss += self.loss(pred, target_tensor)
return loss
else:
target_tensor = self.get_target_tensor(input[-1], target_is_real)
return self.loss(input[-1], target_tensor)
class IDMRFLoss(pl.LightningModule):
def __init__(self, featlayer=VGG19FeatLayer):
super(IDMRFLoss, self).__init__()
self.featlayer = featlayer()
self.feat_style_layers = {'relu3_2': 1.0, 'relu4_2': 1.0}
self.feat_content_layers = {'relu4_2': 1.0}
self.bias = 1.0
self.nn_stretch_sigma = 0.5
self.lambda_style = 1.0
self.lambda_content = 1.0
def sum_normalize(self, featmaps):
reduce_sum = torch.sum(featmaps, dim=1, keepdim=True)
return featmaps / reduce_sum
def patch_extraction(self, featmaps):
patch_size = 1
patch_stride = 1
patches_as_depth_vectors = featmaps.unfold(2, patch_size, patch_stride).unfold(
3, patch_size, patch_stride
)
self.patches_OIHW = patches_as_depth_vectors.permute(0, 2, 3, 1, 4, 5)
dims = self.patches_OIHW.size()
self.patches_OIHW = self.patches_OIHW.view(-1, dims[3], dims[4], dims[5])
return self.patches_OIHW
def compute_relative_distances(self, cdist):
epsilon = 1e-5
div = torch.min(cdist, dim=1, keepdim=True)[0]
relative_dist = cdist / (div + epsilon)
return relative_dist
def exp_norm_relative_dist(self, relative_dist):
scaled_dist = relative_dist
dist_before_norm = torch.exp((self.bias - scaled_dist) / self.nn_stretch_sigma)
self.cs_NCHW = self.sum_normalize(dist_before_norm)
return self.cs_NCHW
def mrf_loss(self, gen, tar):
meanT = torch.mean(tar, 1, keepdim=True)
gen_feats, tar_feats = gen - meanT, tar - meanT
gen_feats_norm = torch.norm(gen_feats, p=2, dim=1, keepdim=True)
tar_feats_norm = torch.norm(tar_feats, p=2, dim=1, keepdim=True)
gen_normalized = gen_feats / gen_feats_norm
tar_normalized = tar_feats / tar_feats_norm
cosine_dist_l = []
BatchSize = tar.size(0)
for i in range(BatchSize):
tar_feat_i = tar_normalized[i:i + 1, :, :, :]
gen_feat_i = gen_normalized[i:i + 1, :, :, :]
patches_OIHW = self.patch_extraction(tar_feat_i)
cosine_dist_i = F.conv2d(gen_feat_i, patches_OIHW)
cosine_dist_l.append(cosine_dist_i)
cosine_dist = torch.cat(cosine_dist_l, dim=0)
cosine_dist_zero_2_one = -(cosine_dist - 1) / 2
relative_dist = self.compute_relative_distances(cosine_dist_zero_2_one)
rela_dist = self.exp_norm_relative_dist(relative_dist)
dims_div_mrf = rela_dist.size()
k_max_nc = torch.max(rela_dist.view(dims_div_mrf[0], dims_div_mrf[1], -1), dim=2)[0]
div_mrf = torch.mean(k_max_nc, dim=1)
div_mrf_sum = -torch.log(div_mrf)
div_mrf_sum = torch.sum(div_mrf_sum)
return div_mrf_sum
def forward(self, gen, tar):
## gen: [bz,3,h,w] rgb [0,1]
gen_vgg_feats = self.featlayer(gen)
tar_vgg_feats = self.featlayer(tar)
style_loss_list = [
self.feat_style_layers[layer] *
self.mrf_loss(gen_vgg_feats[layer], tar_vgg_feats[layer])
for layer in self.feat_style_layers
]
self.style_loss = functools.reduce(lambda x, y: x + y, style_loss_list) * self.lambda_style
content_loss_list = [
self.feat_content_layers[layer] *
self.mrf_loss(gen_vgg_feats[layer], tar_vgg_feats[layer])
for layer in self.feat_content_layers
]
self.content_loss = functools.reduce(
lambda x, y: x + y, content_loss_list
) * self.lambda_content
return self.style_loss + self.content_loss
|