File size: 11,505 Bytes
de4d7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487ee6d
de4d7c5
 
 
 
 
 
 
 
487ee6d
de4d7c5
 
487ee6d
de4d7c5
487ee6d
de4d7c5
 
487ee6d
 
de4d7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487ee6d
 
 
 
 
 
 
 
de4d7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487ee6d
 
 
 
de4d7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]

import logging
import warnings

warnings.filterwarnings("ignore")
logging.getLogger("lightning").setLevel(logging.ERROR)
logging.getLogger("trimesh").setLevel(logging.ERROR)

import argparse
import os

import torch
from termcolor import colored
from tqdm.auto import tqdm

from apps.IFGeo import IFGeo
from apps.Normal import Normal
from lib.common.BNI import BNI
from lib.common.BNI_utils import save_normal_tensor
from lib.common.config import cfg
from lib.common.voxelize import VoxelGrid
from lib.dataset.EvalDataset import EvalDataset
from lib.dataset.Evaluator import Evaluator
from lib.dataset.mesh_util import *

torch.backends.cudnn.benchmark = True
speed_analysis = False

if __name__ == "__main__":

    if speed_analysis:
        import cProfile
        import pstats
        profiler = cProfile.Profile()
        profiler.enable()

    # loading cfg file
    parser = argparse.ArgumentParser()

    parser.add_argument("-gpu", "--gpu_device", type=int, default=0)
    parser.add_argument("-ifnet", action="store_true")
    parser.add_argument("-cfg", "--config", type=str, default="./configs/econ.yaml")

    args = parser.parse_args()

    # cfg read and merge
    cfg.merge_from_file(args.config)
    device = torch.device("cuda:0")

    cfg_test_list = [
        "dataset.rotation_num",
        3,
        "bni.use_smpl",
        ["hand"],
        "bni.use_ifnet",
        args.ifnet,
        "bni.cut_intersection",
        True,
    ]

    # # if w/ RenderPeople+CAPE
    # cfg_test_list += ["dataset.types", ["cape", "renderpeople"], "dataset.scales", [100.0, 1.0]]

    # if only w/ CAPE
    cfg_test_list += ["dataset.types", ["cape"], "dataset.scales", [100.0]]

    cfg.merge_from_list(cfg_test_list)
    cfg.freeze()

    # load normal model
    normal_net = Normal.load_from_checkpoint(
        cfg=cfg, checkpoint_path=cfg.normal_path, map_location=device, strict=False
    )
    normal_net = normal_net.to(device)
    normal_net.netG.eval()
    print(
        colored(
            f"Resume Normal Estimator from {Format.start} {cfg.normal_path} {Format.end}", "green"
        )
    )

    # SMPLX object
    SMPLX_object = SMPLX()

    dataset = EvalDataset(cfg=cfg, device=device)
    evaluator = Evaluator(device=device)
    export_dir = osp.join(cfg.results_path, cfg.name, "IF-Net+" if cfg.bni.use_ifnet else "SMPL-X")
    print(colored(f"Dataset Size: {len(dataset)}", "green"))

    if cfg.bni.use_ifnet:
        # load IFGeo model
        ifnet = IFGeo.load_from_checkpoint(
            cfg=cfg, checkpoint_path=cfg.ifnet_path, map_location=device, strict=False
        )
        ifnet = ifnet.to(device)
        ifnet.netG.eval()

        print(colored(f"Resume IF-Net+ from {Format.start} {cfg.ifnet_path} {Format.end}", "green"))
        print(colored(f"Complete with {Format.start} IF-Nets+ (Implicit) {Format.end}", "green"))
    else:
        print(colored(f"Complete with {Format.start} SMPL-X (Explicit) {Format.end}", "green"))

    pbar = tqdm(dataset)
    benchmark = {}

    for data in pbar:

        for key in data.keys():
            if torch.is_tensor(data[key]):
                data[key] = data[key].unsqueeze(0).to(device)

        is_smplx = True if 'smplx_path' in data.keys() else False

        # filenames and makedirs
        current_name = f"{data['dataset']}-{data['subject']}-{data['rotation']:03d}"
        current_dir = osp.join(export_dir, data['dataset'], data['subject'])
        os.makedirs(current_dir, exist_ok=True)
        final_path = osp.join(current_dir, f"{current_name}_final.obj")

        if not osp.exists(final_path):

            in_tensor = data.copy()

            batch_smpl_verts = in_tensor["smpl_verts"].detach()
            batch_smpl_verts *= torch.tensor([1.0, -1.0, 1.0]).to(device)
            batch_smpl_faces = in_tensor["smpl_faces"].detach()

            in_tensor["depth_F"], in_tensor["depth_B"] = dataset.render_depth(
                batch_smpl_verts, batch_smpl_faces
            )

            with torch.no_grad():
                in_tensor["normal_F"], in_tensor["normal_B"] = normal_net.netG(in_tensor)

            smpl_mesh = trimesh.Trimesh(
                batch_smpl_verts.cpu().numpy()[0],
                batch_smpl_faces.cpu().numpy()[0]
            )

            side_mesh = smpl_mesh.copy()
            face_mesh = smpl_mesh.copy()
            hand_mesh = smpl_mesh.copy()
            smplx_mesh = smpl_mesh.copy()

            # save normals, depths and masks
            BNI_dict = save_normal_tensor(
                in_tensor,
                0,
                osp.join(current_dir, "BNI/param_dict"),
                cfg.bni.thickness if data['dataset'] == 'renderpeople' else 0.0,
            )

            # BNI process
            BNI_object = BNI(
                dir_path=osp.join(current_dir, "BNI"),
                name=current_name,
                BNI_dict=BNI_dict,
                cfg=cfg.bni,
                device=device
            )

            BNI_object.extract_surface(False)

            if is_smplx:
                side_mesh = apply_face_mask(side_mesh, ~SMPLX_object.smplx_eyeball_fid_mask)

            if cfg.bni.use_ifnet:

                # mesh completion via IF-net
                in_tensor.update(
                    dataset.depth_to_voxel({
                        "depth_F": BNI_object.F_depth.unsqueeze(0).to(device), "depth_B":
                        BNI_object.B_depth.unsqueeze(0).to(device)
                    })
                )

                occupancies = VoxelGrid.from_mesh(side_mesh, cfg.vol_res, loc=[
                    0,
                ] * 3, scale=2.0).data.transpose(2, 1, 0)
                occupancies = np.flip(occupancies, axis=1)

                in_tensor["body_voxels"] = torch.tensor(occupancies.copy()
                                                       ).float().unsqueeze(0).to(device)

                with torch.no_grad():
                    sdf = ifnet.reconEngine(netG=ifnet.netG, batch=in_tensor)
                    verts_IF, faces_IF = ifnet.reconEngine.export_mesh(sdf)

                if ifnet.clean_mesh_flag:
                    verts_IF, faces_IF = clean_mesh(verts_IF, faces_IF)

                side_mesh_path = osp.join(current_dir, f"{current_name}_IF.obj")
                side_mesh = remesh_laplacian(trimesh.Trimesh(verts_IF, faces_IF), side_mesh_path)

            full_lst = []

            if "hand" in cfg.bni.use_smpl:

                # only hands
                if is_smplx:
                    hand_mesh = apply_vertex_mask(hand_mesh, SMPLX_object.smplx_mano_vertex_mask)
                else:
                    hand_mesh = apply_vertex_mask(hand_mesh, SMPLX_object.smpl_mano_vertex_mask)

                # remove hand neighbor triangles
                BNI_object.F_B_trimesh = part_removal(
                    BNI_object.F_B_trimesh,
                    hand_mesh,
                    cfg.bni.hand_thres,
                    device,
                    smplx_mesh,
                    region="hand"
                )
                side_mesh = part_removal(
                    side_mesh, hand_mesh, cfg.bni.hand_thres, device, smplx_mesh, region="hand"
                )
                # hand_mesh.export(osp.join(current_dir, f"{current_name}_hands.obj"))
                full_lst += [hand_mesh]

            full_lst += [BNI_object.F_B_trimesh]

            # initial side_mesh could be SMPLX or IF-net
            side_mesh = part_removal(
                side_mesh, sum(full_lst), 2e-2, device, smplx_mesh, region="", clean=False
            )

            full_lst += [side_mesh]

            if cfg.bni.use_poisson:
                final_mesh = poisson(
                    sum(full_lst),
                    final_path,
                    cfg.bni.poisson_depth,
                )
            else:
                final_mesh = sum(full_lst)
                final_mesh.export(final_path)
        else:
            final_mesh = trimesh.load(final_path)

        # evaluation
        metric_path = osp.join(export_dir, "metric.npy")

        if osp.exists(metric_path):
            benchmark = np.load(metric_path, allow_pickle=True).item()

        if benchmark == {} or data["dataset"] not in benchmark.keys(
        ) or f"{data['subject']}-{data['rotation']}" not in benchmark[data["dataset"]]["subject"]:

            result_eval = {
                "verts_gt": data["verts"][0],
                "faces_gt": data["faces"][0],
                "verts_pr": final_mesh.vertices,
                "faces_pr": final_mesh.faces,
                "calib": data["calib"][0],
            }

            evaluator.set_mesh(result_eval, scale=False)
            chamfer, p2s = evaluator.calculate_chamfer_p2s(num_samples=1000)
            nc = evaluator.calculate_normal_consist(osp.join(current_dir, f"{current_name}_nc.png"))

            if data["dataset"] not in benchmark.keys():
                benchmark[data["dataset"]] = {
                    "chamfer": [chamfer.item()],
                    "p2s": [p2s.item()],
                    "nc": [nc.item()],
                    "subject": [f"{data['subject']}-{data['rotation']}"],
                    "total": 1,
                }
            else:
                benchmark[data["dataset"]]["chamfer"] += [chamfer.item()]
                benchmark[data["dataset"]]["p2s"] += [p2s.item()]
                benchmark[data["dataset"]]["nc"] += [nc.item()]
                benchmark[data["dataset"]]["subject"] += [f"{data['subject']}-{data['rotation']}"]
                benchmark[data["dataset"]]["total"] += 1

            np.save(metric_path, benchmark, allow_pickle=True)

        else:

            subject_idx = benchmark[data["dataset"]
                                   ]["subject"].index(f"{data['subject']}-{data['rotation']}")
            chamfer = torch.tensor(benchmark[data["dataset"]]["chamfer"][subject_idx])
            p2s = torch.tensor(benchmark[data["dataset"]]["p2s"][subject_idx])
            nc = torch.tensor(benchmark[data["dataset"]]["nc"][subject_idx])

        pbar.set_description(
            f"{current_name} | {chamfer.item():.3f} | {p2s.item():.3f} | {nc.item():.4f}"
        )

    for dataset in benchmark.keys():
        for metric in ["chamfer", "p2s", "nc"]:
            print(
                f"{dataset}-{metric}: {sum(benchmark[dataset][metric])/benchmark[dataset]['total']:.4f}"
            )

    if cfg.bni.use_ifnet:
        print(colored("Finish evaluating on ECON_IF", "green"))
    else:
        print(colored("Finish evaluating of ECON_EX", "green"))

    if speed_analysis:
        profiler.disable()
        profiler.dump_stats(osp.join(export_dir, "econ.stats"))
        stats = pstats.Stats(osp.join(export_dir, "econ.stats"))
        stats.sort_stats("cumtime").print_stats(10)