Spaces:
Runtime error
Runtime error
File size: 4,955 Bytes
da48dbe 487ee6d da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]
import numpy as np
import pytorch_lightning as pl
import torch
from lib.common.seg3d_lossless import Seg3dLossless
from lib.common.train_util import *
torch.backends.cudnn.benchmark = True
class IFGeo(pl.LightningModule):
def __init__(self, cfg):
super(IFGeo, self).__init__()
self.cfg = cfg
self.batch_size = self.cfg.batch_size
self.lr_G = self.cfg.lr_G
self.use_sdf = cfg.sdf
self.mcube_res = cfg.mcube_res
self.clean_mesh_flag = cfg.clean_mesh
self.overfit = cfg.overfit
if cfg.dataset.prior_type == "SMPL":
from lib.net.IFGeoNet import IFGeoNet
self.netG = IFGeoNet(cfg)
else:
from lib.net.IFGeoNet_nobody import IFGeoNet
self.netG = IFGeoNet(cfg)
self.resolutions = (
np.logspace(
start=5,
stop=np.log2(self.mcube_res),
base=2,
num=int(np.log2(self.mcube_res) - 4),
endpoint=True,
) + 1.0
)
self.resolutions = self.resolutions.astype(np.int16).tolist()
self.reconEngine = Seg3dLossless(
query_func=query_func_IF,
b_min=[[-1.0, 1.0, -1.0]],
b_max=[[1.0, -1.0, 1.0]],
resolutions=self.resolutions,
align_corners=True,
balance_value=0.50,
visualize=False,
debug=False,
use_cuda_impl=False,
faster=True,
)
self.export_dir = None
self.result_eval = {}
# Training related
def configure_optimizers(self):
# set optimizer
weight_decay = self.cfg.weight_decay
momentum = self.cfg.momentum
optim_params_G = [{"params": self.netG.parameters(), "lr": self.lr_G}]
if self.cfg.optim == "Adadelta":
optimizer_G = torch.optim.Adadelta(
optim_params_G, lr=self.lr_G, weight_decay=weight_decay
)
elif self.cfg.optim == "Adam":
optimizer_G = torch.optim.Adam(optim_params_G, lr=self.lr_G, weight_decay=weight_decay)
elif self.cfg.optim == "RMSprop":
optimizer_G = torch.optim.RMSprop(
optim_params_G,
lr=self.lr_G,
weight_decay=weight_decay,
momentum=momentum,
)
else:
raise NotImplementedError
# set scheduler
scheduler_G = torch.optim.lr_scheduler.MultiStepLR(
optimizer_G, milestones=self.cfg.schedule, gamma=self.cfg.gamma
)
return [optimizer_G], [scheduler_G]
def training_step(self, batch, batch_idx):
self.netG.train()
preds_G = self.netG(batch)
error_G = self.netG.compute_loss(preds_G, batch["labels_geo"])
# metrics processing
metrics_log = {
"loss": error_G,
}
self.log_dict(
metrics_log, prog_bar=True, logger=True, on_step=True, on_epoch=False, sync_dist=True
)
return metrics_log
def training_epoch_end(self, outputs):
# metrics processing
metrics_log = {
"train/avgloss": batch_mean(outputs, "loss"),
}
self.log_dict(
metrics_log,
prog_bar=False,
logger=True,
on_step=False,
on_epoch=True,
rank_zero_only=True
)
def validation_step(self, batch, batch_idx):
self.netG.eval()
self.netG.training = False
preds_G = self.netG(batch)
error_G = self.netG.compute_loss(preds_G, batch["labels_geo"])
metrics_log = {
"val/loss": error_G,
}
self.log_dict(
metrics_log, prog_bar=True, logger=False, on_step=True, on_epoch=False, sync_dist=True
)
return metrics_log
def validation_epoch_end(self, outputs):
# metrics processing
metrics_log = {
"val/avgloss": batch_mean(outputs, "val/loss"),
}
self.log_dict(
metrics_log,
prog_bar=False,
logger=True,
on_step=False,
on_epoch=True,
rank_zero_only=True
)
|