Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from typing import Optional, Union, List, Tuple | |
from diffusers.pipelines import FluxPipeline | |
from PIL import Image, ImageFilter | |
import numpy as np | |
import cv2 | |
condition_dict = { | |
"depth": 0, | |
"canny": 1, | |
"subject": 4, | |
"coloring": 6, | |
"deblurring": 7, | |
"fill": 9, | |
} | |
class Condition(object): | |
def __init__( | |
self, | |
condition_type: str, | |
raw_img: Union[Image.Image, torch.Tensor] = None, | |
condition: Union[Image.Image, torch.Tensor] = None, | |
mask=None, | |
) -> None: | |
self.condition_type = condition_type | |
assert raw_img is not None or condition is not None | |
if raw_img is not None: | |
self.condition = self.get_condition(condition_type, raw_img) | |
else: | |
self.condition = condition | |
# TODO: Add mask support | |
assert mask is None, "Mask not supported yet" | |
def get_condition( | |
self, condition_type: str, raw_img: Union[Image.Image, torch.Tensor] | |
) -> Union[Image.Image, torch.Tensor]: | |
""" | |
Returns the condition image. | |
""" | |
if condition_type == "depth": | |
from transformers import pipeline | |
depth_pipe = pipeline( | |
task="depth-estimation", | |
model="LiheYoung/depth-anything-small-hf", | |
device="cuda", | |
) | |
source_image = raw_img.convert("RGB") | |
condition_img = depth_pipe(source_image)["depth"].convert("RGB") | |
return condition_img | |
elif condition_type == "canny": | |
img = np.array(raw_img) | |
edges = cv2.Canny(img, 100, 200) | |
edges = Image.fromarray(edges).convert("RGB") | |
return edges | |
elif condition_type == "subject": | |
return raw_img | |
elif condition_type == "coloring": | |
return raw_img.convert("L").convert("RGB") | |
elif condition_type == "deblurring": | |
condition_image = ( | |
raw_img.convert("RGB") | |
.filter(ImageFilter.GaussianBlur(10)) | |
.convert("RGB") | |
) | |
return condition_image | |
elif condition_type == "fill": | |
return raw_img.convert("RGB") | |
return self.condition | |
def type_id(self) -> int: | |
""" | |
Returns the type id of the condition. | |
""" | |
return condition_dict[self.condition_type] | |
def get_type_id(cls, condition_type: str) -> int: | |
""" | |
Returns the type id of the condition. | |
""" | |
return condition_dict[condition_type] | |
def _encode_image(self, pipe: FluxPipeline, cond_img: Image.Image) -> torch.Tensor: | |
""" | |
Encodes an image condition into tokens using the pipeline. | |
""" | |
cond_img = pipe.image_processor.preprocess(cond_img) | |
cond_img = cond_img.to(pipe.device).to(pipe.dtype) | |
cond_img = pipe.vae.encode(cond_img).latent_dist.sample() | |
cond_img = ( | |
cond_img - pipe.vae.config.shift_factor | |
) * pipe.vae.config.scaling_factor | |
cond_tokens = pipe._pack_latents(cond_img, *cond_img.shape) | |
cond_ids = pipe._prepare_latent_image_ids( | |
cond_img.shape[0], | |
cond_img.shape[2], | |
cond_img.shape[3], | |
pipe.device, | |
pipe.dtype, | |
) | |
return cond_tokens, cond_ids | |
def encode(self, pipe: FluxPipeline) -> Tuple[torch.Tensor, torch.Tensor, int]: | |
""" | |
Encodes the condition into tokens, ids and type_id. | |
""" | |
if self.condition_type in [ | |
"depth", | |
"canny", | |
"subject", | |
"coloring", | |
"deblurring", | |
"fill", | |
]: | |
tokens, ids = self._encode_image(pipe, self.condition) | |
else: | |
raise NotImplementedError( | |
f"Condition type {self.condition_type} not implemented" | |
) | |
type_id = torch.ones_like(ids[:, :1]) * self.type_id | |
return tokens, ids, type_id | |