Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from typing import List, Union, Optional, Dict, Any, Callable | |
from diffusers.models.attention_processor import Attention, F | |
from .lora_controller import enable_lora | |
def attn_forward( | |
attn: Attention, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: torch.FloatTensor = None, | |
condition_latents: torch.FloatTensor = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
image_rotary_emb: Optional[torch.Tensor] = None, | |
cond_rotary_emb: Optional[torch.Tensor] = None, | |
model_config: Optional[Dict[str, Any]] = {}, | |
) -> torch.FloatTensor: | |
batch_size, _, _ = ( | |
hidden_states.shape | |
if encoder_hidden_states is None | |
else encoder_hidden_states.shape | |
) | |
with enable_lora( | |
(attn.to_q, attn.to_k, attn.to_v), model_config.get("latent_lora", False) | |
): | |
# `sample` projections. | |
query = attn.to_q(hidden_states) | |
key = attn.to_k(hidden_states) | |
value = attn.to_v(hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
if attn.norm_q is not None: | |
query = attn.norm_q(query) | |
if attn.norm_k is not None: | |
key = attn.norm_k(key) | |
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` | |
if encoder_hidden_states is not None: | |
# `context` projections. | |
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) | |
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) | |
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) | |
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
if attn.norm_added_q is not None: | |
encoder_hidden_states_query_proj = attn.norm_added_q( | |
encoder_hidden_states_query_proj | |
) | |
if attn.norm_added_k is not None: | |
encoder_hidden_states_key_proj = attn.norm_added_k( | |
encoder_hidden_states_key_proj | |
) | |
# attention | |
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) | |
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) | |
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) | |
if image_rotary_emb is not None: | |
from diffusers.models.embeddings import apply_rotary_emb | |
query = apply_rotary_emb(query, image_rotary_emb) | |
key = apply_rotary_emb(key, image_rotary_emb) | |
if condition_latents is not None: | |
cond_query = attn.to_q(condition_latents) | |
cond_key = attn.to_k(condition_latents) | |
cond_value = attn.to_v(condition_latents) | |
cond_query = cond_query.view(batch_size, -1, attn.heads, head_dim).transpose( | |
1, 2 | |
) | |
cond_key = cond_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
cond_value = cond_value.view(batch_size, -1, attn.heads, head_dim).transpose( | |
1, 2 | |
) | |
if attn.norm_q is not None: | |
cond_query = attn.norm_q(cond_query) | |
if attn.norm_k is not None: | |
cond_key = attn.norm_k(cond_key) | |
if cond_rotary_emb is not None: | |
cond_query = apply_rotary_emb(cond_query, cond_rotary_emb) | |
cond_key = apply_rotary_emb(cond_key, cond_rotary_emb) | |
if condition_latents is not None: | |
query = torch.cat([query, cond_query], dim=2) | |
key = torch.cat([key, cond_key], dim=2) | |
value = torch.cat([value, cond_value], dim=2) | |
if not model_config.get("union_cond_attn", True): | |
# If we don't want to use the union condition attention, we need to mask the attention | |
# between the hidden states and the condition latents | |
attention_mask = torch.ones( | |
query.shape[2], key.shape[2], device=query.device, dtype=torch.bool | |
) | |
condition_n = cond_query.shape[2] | |
attention_mask[-condition_n:, :-condition_n] = False | |
attention_mask[:-condition_n, -condition_n:] = False | |
if hasattr(attn, "c_factor"): | |
attention_mask = torch.zeros( | |
query.shape[2], key.shape[2], device=query.device, dtype=query.dtype | |
) | |
condition_n = cond_query.shape[2] | |
bias = torch.log(attn.c_factor[0]) | |
attention_mask[-condition_n:, :-condition_n] = bias | |
attention_mask[:-condition_n, -condition_n:] = bias | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape( | |
batch_size, -1, attn.heads * head_dim | |
) | |
hidden_states = hidden_states.to(query.dtype) | |
if encoder_hidden_states is not None: | |
if condition_latents is not None: | |
encoder_hidden_states, hidden_states, condition_latents = ( | |
hidden_states[:, : encoder_hidden_states.shape[1]], | |
hidden_states[ | |
:, encoder_hidden_states.shape[1] : -condition_latents.shape[1] | |
], | |
hidden_states[:, -condition_latents.shape[1] :], | |
) | |
else: | |
encoder_hidden_states, hidden_states = ( | |
hidden_states[:, : encoder_hidden_states.shape[1]], | |
hidden_states[:, encoder_hidden_states.shape[1] :], | |
) | |
with enable_lora((attn.to_out[0],), model_config.get("latent_lora", False)): | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
encoder_hidden_states = attn.to_add_out(encoder_hidden_states) | |
if condition_latents is not None: | |
condition_latents = attn.to_out[0](condition_latents) | |
condition_latents = attn.to_out[1](condition_latents) | |
return ( | |
(hidden_states, encoder_hidden_states, condition_latents) | |
if condition_latents is not None | |
else (hidden_states, encoder_hidden_states) | |
) | |
elif condition_latents is not None: | |
# if there are condition_latents, we need to separate the hidden_states and the condition_latents | |
hidden_states, condition_latents = ( | |
hidden_states[:, : -condition_latents.shape[1]], | |
hidden_states[:, -condition_latents.shape[1] :], | |
) | |
return hidden_states, condition_latents | |
else: | |
return hidden_states | |
def block_forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: torch.FloatTensor, | |
condition_latents: torch.FloatTensor, | |
temb: torch.FloatTensor, | |
cond_temb: torch.FloatTensor, | |
cond_rotary_emb=None, | |
image_rotary_emb=None, | |
model_config: Optional[Dict[str, Any]] = {}, | |
): | |
use_cond = condition_latents is not None | |
with enable_lora((self.norm1.linear,), model_config.get("latent_lora", False)): | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, emb=temb | |
) | |
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = ( | |
self.norm1_context(encoder_hidden_states, emb=temb) | |
) | |
if use_cond: | |
( | |
norm_condition_latents, | |
cond_gate_msa, | |
cond_shift_mlp, | |
cond_scale_mlp, | |
cond_gate_mlp, | |
) = self.norm1(condition_latents, emb=cond_temb) | |
# Attention. | |
result = attn_forward( | |
self.attn, | |
model_config=model_config, | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=norm_encoder_hidden_states, | |
condition_latents=norm_condition_latents if use_cond else None, | |
image_rotary_emb=image_rotary_emb, | |
cond_rotary_emb=cond_rotary_emb if use_cond else None, | |
) | |
attn_output, context_attn_output = result[:2] | |
cond_attn_output = result[2] if use_cond else None | |
# Process attention outputs for the `hidden_states`. | |
# 1. hidden_states | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
hidden_states = hidden_states + attn_output | |
# 2. encoder_hidden_states | |
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output | |
encoder_hidden_states = encoder_hidden_states + context_attn_output | |
# 3. condition_latents | |
if use_cond: | |
cond_attn_output = cond_gate_msa.unsqueeze(1) * cond_attn_output | |
condition_latents = condition_latents + cond_attn_output | |
if model_config.get("add_cond_attn", False): | |
hidden_states += cond_attn_output | |
# LayerNorm + MLP. | |
# 1. hidden_states | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = ( | |
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
) | |
# 2. encoder_hidden_states | |
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) | |
norm_encoder_hidden_states = ( | |
norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] | |
) | |
# 3. condition_latents | |
if use_cond: | |
norm_condition_latents = self.norm2(condition_latents) | |
norm_condition_latents = ( | |
norm_condition_latents * (1 + cond_scale_mlp[:, None]) | |
+ cond_shift_mlp[:, None] | |
) | |
# Feed-forward. | |
with enable_lora((self.ff.net[2],), model_config.get("latent_lora", False)): | |
# 1. hidden_states | |
ff_output = self.ff(norm_hidden_states) | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
# 2. encoder_hidden_states | |
context_ff_output = self.ff_context(norm_encoder_hidden_states) | |
context_ff_output = c_gate_mlp.unsqueeze(1) * context_ff_output | |
# 3. condition_latents | |
if use_cond: | |
cond_ff_output = self.ff(norm_condition_latents) | |
cond_ff_output = cond_gate_mlp.unsqueeze(1) * cond_ff_output | |
# Process feed-forward outputs. | |
hidden_states = hidden_states + ff_output | |
encoder_hidden_states = encoder_hidden_states + context_ff_output | |
if use_cond: | |
condition_latents = condition_latents + cond_ff_output | |
# Clip to avoid overflow. | |
if encoder_hidden_states.dtype == torch.float16: | |
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504) | |
return encoder_hidden_states, hidden_states, condition_latents if use_cond else None | |
def single_block_forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: torch.FloatTensor, | |
image_rotary_emb=None, | |
condition_latents: torch.FloatTensor = None, | |
cond_temb: torch.FloatTensor = None, | |
cond_rotary_emb=None, | |
model_config: Optional[Dict[str, Any]] = {}, | |
): | |
using_cond = condition_latents is not None | |
residual = hidden_states | |
with enable_lora( | |
( | |
self.norm.linear, | |
self.proj_mlp, | |
), | |
model_config.get("latent_lora", False), | |
): | |
norm_hidden_states, gate = self.norm(hidden_states, emb=temb) | |
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) | |
if using_cond: | |
residual_cond = condition_latents | |
norm_condition_latents, cond_gate = self.norm(condition_latents, emb=cond_temb) | |
mlp_cond_hidden_states = self.act_mlp(self.proj_mlp(norm_condition_latents)) | |
attn_output = attn_forward( | |
self.attn, | |
model_config=model_config, | |
hidden_states=norm_hidden_states, | |
image_rotary_emb=image_rotary_emb, | |
**( | |
{ | |
"condition_latents": norm_condition_latents, | |
"cond_rotary_emb": cond_rotary_emb if using_cond else None, | |
} | |
if using_cond | |
else {} | |
), | |
) | |
if using_cond: | |
attn_output, cond_attn_output = attn_output | |
with enable_lora((self.proj_out,), model_config.get("latent_lora", False)): | |
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) | |
gate = gate.unsqueeze(1) | |
hidden_states = gate * self.proj_out(hidden_states) | |
hidden_states = residual + hidden_states | |
if using_cond: | |
condition_latents = torch.cat([cond_attn_output, mlp_cond_hidden_states], dim=2) | |
cond_gate = cond_gate.unsqueeze(1) | |
condition_latents = cond_gate * self.proj_out(condition_latents) | |
condition_latents = residual_cond + condition_latents | |
if hidden_states.dtype == torch.float16: | |
hidden_states = hidden_states.clip(-65504, 65504) | |
return hidden_states if not using_cond else (hidden_states, condition_latents) | |