File size: 8,969 Bytes
a846cff
2a7655f
 
7be4c79
d3f2a30
 
 
 
 
 
 
7be4c79
 
2a7655f
 
 
e9c493a
2a7655f
 
 
d3f2a30
2a7655f
d3f2a30
 
2a7655f
674bc5d
9524f0c
2a7655f
1d60450
 
2a7655f
ff838fb
d3f2a30
 
ff838fb
03b3365
2a7655f
d3f2a30
d801b9c
9524f0c
2a7655f
d3f2a30
 
847da17
2a7655f
 
 
 
 
c7c21fa
ff838fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ea9122
dc13be0
1ea9122
ff838fb
 
 
 
 
 
 
 
 
28fa05c
 
 
 
 
 
 
 
ff838fb
91b87bd
d3f2a30
2a7655f
d3f2a30
 
2a7655f
 
 
8d73fdc
 
2a7655f
8d73fdc
 
 
 
2a7655f
 
 
 
 
 
 
d3f2a30
 
 
2a7655f
d3f2a30
 
2a7655f
 
 
 
 
 
d3f2a30
2a7655f
 
ff838fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a7655f
dee1ba3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import gradio as gr
from random import randint
from all_models import models

from externalmod import gr_Interface_load

import asyncio
import os
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.


def load_fn(models):
    global models_load
    models_load = {}
    
    for model in models:
        if model not in models_load.keys():
            try:
                m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
            except Exception as error:
                print(error)
                m = gr.Interface(lambda: None, ['text'], ['image'])
            models_load.update({model: m})


load_fn(models)


num_models = 6
MAX_SEED = 3999999999
default_models = models[:num_models]
inference_timeout = 600
starting_seed = randint(1941, 2024)

def extend_choices(choices):
    return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']


def update_imgbox(choices):
    choices_plus = extend_choices(choices[:num_models])
    return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]
    
def gen_fn(model_str, prompt):
    if model_str == 'NA':
        return None
    noise = str('') #str(randint(0, 99999999999))
    return models_load[model_str](f'{prompt} {noise}')

async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
    from pathlib import Path
    kwargs = {}
    noise = ""
    kwargs["seed"] = seed
    task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
                               prompt=f'{prompt} {noise}', **kwargs, token=HF_TOKEN))
    await asyncio.sleep(0)
    try:
        result = await asyncio.wait_for(task, timeout=timeout)
    except (Exception, asyncio.TimeoutError) as e:
        print(e)
        print(f"Task timed out: {model_str}")
        if not task.done(): task.cancel()
        result = None
    if task.done() and result is not None:
        with lock:
            png_path = "image.png"
            result.save(png_path)
            image = str(Path(png_path).resolve())
        return image
    return None

def gen_fnseed(model_str, prompt, seed=1):
    if model_str == 'NA':
        return None
    try:
        loop = asyncio.new_event_loop()
        result = loop.run_until_complete(infer(model_str, prompt, seed, inference_timeout))
    except (Exception, asyncio.CancelledError) as e:
        print(e)
        print(f"Task aborted: {model_str}")
        result = None
        with lock:
            image = "https://huggingface.co/spaces/Yntec/ToyWorld/resolve/main/error.png"
        result = image
    finally:
        loop.close()
    return result

css="""
.wrapper img {font-size: 98% !important; white-space: nowrap !important; text-align: center !important;
display: inline-block !important;}
"""

with gr.Blocks() as demo:
    gr.HTML(
    """
        <div>
        <p> <center>Most models have been taken offline and no more models will be added, for more information check <a href="https://huggingface.co/posts/nyuuzyou/820726264775936#674e9034b4eb56ff8080a786">this thread.</center>
        </p></div>
    """
    )  

    with gr.Tab('Toy World'): 
        txt_input = gr.Textbox(label='Your prompt:', lines=4)
        gen_button = gr.Button('Generate up to 6 images in up to 3 minutes total')
        #stop_button = gr.Button('Stop', variant = 'secondary', interactive = False)
        gen_button.click(lambda s: gr.update(interactive = True), None)
        gr.HTML(
        """
            <div style="text-align: center; max-width: 1200px; margin: 0 auto;">
              <div>
                <body>
                <div class="center"><p style="margin-bottom: 10px; color: #000000;">Scroll down to see more images and select models.</p>
                </div>
                </body>
              </div>
            </div>
        """
               )
        with gr.Row():
            output = [gr.Image(label = m, min_width=480) for m in default_models]
            current_models = [gr.Textbox(m, visible = False) for m in default_models]
                        
            for m, o in zip(current_models, output):
                gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,
                            inputs=[m, txt_input], outputs=[o], concurrency_limit=None, queue=False)
                #stop_button.click(lambda s: gr.update(interactive = False), None, stop_button, cancels = [gen_event])
        with gr.Accordion('Model selection'):
            model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
            #model_choice = gr.CheckboxGroup(models, label = f'Choose up to {num_models} different models from the 2 available! Untick them to only use one!', value = default_models, multiselect = True, max_choices = num_models, interactive = True, filterable = False)
            model_choice.change(update_imgbox, model_choice, output)
            model_choice.change(extend_choices, model_choice, current_models)
        with gr.Row():
            gr.HTML(
    """
        <div class="footer">
        <p> Based on the <a href="https://huggingface.co/spaces/John6666/hfd_test_nostopbutton">Huggingface NoStopButton</a> Space by John6666, <a href="https://huggingface.co/spaces/derwahnsinn/TestGen">TestGen</a> Space by derwahnsinn, the <a href="https://huggingface.co/spaces/RdnUser77/SpacIO_v1">SpacIO</a> Space by RdnUser77 and Omnibus's Maximum Multiplier! For 6 images with the same model check out the <a href="https://huggingface.co/spaces/Yntec/PrintingPress">Printing Press</a>, for the classic UI with prompt enhancer try <a href="https://huggingface.co/spaces/Yntec/blitz_diffusion">Blitz Diffusion!</a>
        </p>
    """
                   )
    with gr.Tab('🌱 Use seeds!'): 
        txt_inputseed = gr.Textbox(label='Your prompt:', lines=4)
        gen_buttonseed = gr.Button('Generate up to 6 images with the same seed in up to 3 minutes total')
        seed = gr.Slider(label="Use a seed to replicate the same image later (maximum 3999999999)", minimum=0, maximum=MAX_SEED, step=1, value=starting_seed, scale=3)
        #stop_button = gr.Button('Stop', variant = 'secondary', interactive = False)
        gen_buttonseed.click(lambda s: gr.update(interactive = True), None)
        gr.HTML(
        """
            <div style="text-align: center; max-width: 1200px; margin: 0 auto;">
              <div>
                <body>
                <div class="center"><p style="margin-bottom: 10px; color: #000000;">Scroll down to see more images and select models.</p>
                </div>
                </body>
              </div>
            </div>
        """
               )
        with gr.Row():
            output = [gr.Image(label = m, min_width=480) for m in default_models]
            current_models = [gr.Textbox(m, visible = False) for m in default_models]
                        
            for m, o in zip(current_models, output):
                gen_eventseed = gr.on(triggers=[gen_buttonseed.click, txt_inputseed.submit], fn=gen_fnseed,
                            inputs=[m, txt_inputseed, seed], outputs=[o], concurrency_limit=None, queue=False)
                #stop_button.click(lambda s: gr.update(interactive = False), None, stop_button, cancels = [gen_event])
        with gr.Accordion('Model selection'):
            model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
            #model_choice = gr.CheckboxGroup(models, label = f'Choose up to {num_models} different models from the 2 available! Untick them to only use one!', value = default_models, multiselect = True, max_choices = num_models, interactive = True, filterable = False)
            model_choice.change(update_imgbox, model_choice, output)
            model_choice.change(extend_choices, model_choice, current_models)
        with gr.Row():
            gr.HTML(
    """
        <div class="footer">
        <p> Based on the <a href="https://huggingface.co/spaces/John6666/hfd_test_nostopbutton">Huggingface NoStopButton</a> Space by John6666, <a href="https://huggingface.co/spaces/derwahnsinn/TestGen">TestGen</a> Space by derwahnsinn, the <a href="https://huggingface.co/spaces/RdnUser77/SpacIO_v1">SpacIO</a> Space by RdnUser77 and Omnibus's Maximum Multiplier! For 6 images with the same model check out the <a href="https://huggingface.co/spaces/Yntec/PrintingPress">Printing Press</a>, for the classic UI with prompt enhancer try <a href="https://huggingface.co/spaces/Yntec/blitz_diffusion">Blitz Diffusion!</a>
        </p>
    """
                    )

demo.queue(default_concurrency_limit=200, max_size=200)
demo.launch(show_api=False, max_threads=400)