|
import gradio as gr |
|
from pathlib import Path |
|
import secrets |
|
import shutil |
|
from inference import detector, detector_processor, segment_predictor, ModelInference |
|
|
|
current_dir = Path(__file__).parent |
|
|
|
|
|
def process_images(image_path, files, slider_value, request: gr.Request): |
|
|
|
user_dir: Path = current_dir / str(request.session_hash) |
|
user_dir.mkdir(exist_ok=True) |
|
|
|
annotation_path = user_dir / f"{secrets.token_hex(nbytes=8)}_annotations.coco.json" |
|
class_names = list(inferencer.id2label.values()) |
|
|
|
if image_path: |
|
print(f"Processing image: {image_path}") |
|
seg_detections, annotated_frame = inferencer.predict_one(image_path) |
|
|
|
inferencer.save_annotations([image_path], [seg_detections], class_names, annotation_path) |
|
elif files: |
|
print(f"Processing files: {files}") |
|
print(f"Batch size: {slider_value}") |
|
all_image_paths, all_results, annotated_frame, detector_failed_list, segmentor_failed_list = inferencer.predict_folder(files, slider_value) |
|
|
|
print(f"Detector failed list: {detector_failed_list}") |
|
print(f"Segmentor failed list: {segmentor_failed_list}") |
|
|
|
inferencer.save_annotations(all_image_paths, all_results, class_names, annotation_path) |
|
|
|
return [ |
|
gr.UploadButton(visible=False), |
|
gr.Button("Run", visible=False), |
|
gr.DownloadButton("Download annotation results", value=annotation_path, label="Download", visible=True), |
|
gr.Image(value=annotated_frame, label="Annotated Image", visible=True), |
|
] |
|
|
|
|
|
def upload_file(): |
|
|
|
return [ |
|
None, |
|
gr.UploadButton(visible=False), |
|
gr.Slider(1, 6, step=1, label="Batch size", interactive=True, value=4, visible=True), |
|
gr.Button("Run", visible=True), |
|
gr.DownloadButton(visible=False), |
|
gr.Image(value=None, label="Annotated Image", visible=True), |
|
] |
|
|
|
|
|
def upload_image(imge_path): |
|
|
|
return [ |
|
gr.UploadButton(visible=False), |
|
gr.Slider(1, 6, step=1, label="Batch size", interactive=True, value=4, visible=False), |
|
gr.Button("Run", visible=True), |
|
gr.DownloadButton(visible=False), |
|
gr.Image(value=None, label="Annotated Image", visible=True), |
|
] |
|
|
|
|
|
def download_file(): |
|
return [ |
|
gr.Image(value=None), |
|
gr.UploadButton(visible=True), |
|
gr.Slider(1, 6, step=1, label="Batch size", interactive=True, value=4, visible=False), |
|
gr.Button("Run", visible=False), |
|
gr.DownloadButton(visible=True), |
|
gr.Image(value=None, visible=False), |
|
] |
|
|
|
|
|
def delete_directory(request: gr.Request): |
|
"""Delete the user-specific directory when the user's session ends.""" |
|
user_dir = current_dir / str(request.session_hash) |
|
if user_dir.exists(): |
|
shutil.rmtree(user_dir) |
|
|
|
|
|
def create_gradio_interface(): |
|
with gr.Blocks(theme=gr.themes.Monochrome(), delete_cache=(60, 3600)) as demo: |
|
gr.HTML(""" |
|
<div style="text-align: center;"> |
|
<h1>Satellite Image Roofs Auto Annotation</h1> |
|
<p>Powered by a <a href="https://huggingface.co/Yifeng-Liu/rt-detr-finetuned-for-satellite-image-roofs-detection" target="_blank">fine-tuned RT-DETR model</a> and a Fast-SAM model.</p> |
|
<p>π€ Upload an image or a folder containing images.</p> |
|
<p>πΌοΈ Images are saved in a user-specific directory and are deleted when the user closes the page.</p> |
|
<p>βοΈ Each user can upload files with a maximum size of 200 MB each time.</p> |
|
<p>π·οΈ Annotation results will be saved in the COCO format for download.</p> |
|
<p>π§ TODO: Enhance model inference using Intel OpenVINO.</p> |
|
</div> |
|
""") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
img_input = gr.Image( |
|
interactive=True, |
|
sources=["upload", "clipboard"], |
|
show_share_button=True, |
|
type='filepath', |
|
label="Upload a single image", |
|
) |
|
upload_button = gr.UploadButton("Upload a folder", file_count="directory") |
|
batch_slider = gr.Slider(1, 6, step=1, label="Batch size", interactive=True, value=4, visible=False) |
|
run_button = gr.Button("Run", visible=False) |
|
with gr.Column(scale=1): |
|
img_output = gr.Image(label="Annotated Image", visible=False) |
|
download_button = gr.DownloadButton("Download annotation results", label="Download", visible=False) |
|
|
|
with gr.Row(): |
|
examples = gr.Examples( |
|
examples=[["./img/example.jpg"]], |
|
inputs=[img_input], |
|
outputs=[upload_button, batch_slider, run_button, download_button, img_output], |
|
fn=upload_image, |
|
run_on_click=True, |
|
) |
|
|
|
upload_button.upload(upload_file, None, [img_input, upload_button, batch_slider, run_button, download_button, img_output]) |
|
|
|
download_button.click(download_file, None, [img_input, upload_button, batch_slider, run_button, download_button, img_output]) |
|
|
|
run_button.click(process_images, |
|
[img_input, upload_button, batch_slider], |
|
[upload_button, run_button, download_button, img_output]) |
|
|
|
img_input.upload(upload_image, img_input, [upload_button, batch_slider, run_button, download_button, img_output]) |
|
|
|
demo.unload(delete_directory) |
|
|
|
return demo |
|
|
|
|
|
def inferencer_init(): |
|
id2label = {0: 'building'} |
|
CONFIDENCE_TRESHOLD = 0.5 |
|
return ModelInference(detector, detector_processor, segment_predictor, id2label, CONFIDENCE_TRESHOLD) |
|
|
|
|
|
inferencer = inferencer_init() |
|
|
|
if __name__ == "__main__": |
|
demo = create_gradio_interface() |
|
demo.launch(max_file_size=200 * gr.FileSize.MB) |
|
|