File size: 5,692 Bytes
0a96ac9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import gradio as gr
from pathlib import Path
import secrets
import shutil
from inference import detector, detector_processor, segment_predictor, ModelInference

current_dir = Path(__file__).parent


def process_images(image_path, files, slider_value, request: gr.Request):

    user_dir: Path = current_dir / str(request.session_hash)
    user_dir.mkdir(exist_ok=True)

    annotation_path = user_dir / f"{secrets.token_hex(nbytes=8)}_annotations.coco.json"
    class_names = list(inferencer.id2label.values())

    if image_path:
        print(f"Processing image: {image_path}")
        seg_detections, annotated_frame = inferencer.predict_one(image_path)

        inferencer.save_annotations([image_path], [seg_detections], class_names, annotation_path)
    elif files:
        print(f"Processing files: {files}")
        print(f"Batch size: {slider_value}")
        all_image_paths, all_results, annotated_frame,  detector_failed_list, segmentor_failed_list = inferencer.predict_folder(files, slider_value)

        print(f"Detector failed list: {detector_failed_list}")
        print(f"Segmentor failed list: {segmentor_failed_list}")

        inferencer.save_annotations(all_image_paths, all_results, class_names, annotation_path)

    return [
        gr.UploadButton(visible=False),
        gr.Button("Run", visible=False),
        gr.DownloadButton("Download annotation results", value=annotation_path, label="Download", visible=True),
        gr.Image(value=annotated_frame, label="Annotated Image", visible=True),
    ]


def upload_file():

    return [
        None,
        gr.UploadButton(visible=False),
        gr.Slider(1, 6, step=1, label="Batch size", interactive=True, value=4, visible=True),
        gr.Button("Run", visible=True),
        gr.DownloadButton(visible=False),
        gr.Image(value=None, label="Annotated Image", visible=True),
    ]


def upload_image(imge_path):

    return [
        gr.UploadButton(visible=False),
        gr.Slider(1, 6, step=1, label="Batch size", interactive=True, value=4, visible=False),
        gr.Button("Run", visible=True),
        gr.DownloadButton(visible=False),
        gr.Image(value=None, label="Annotated Image", visible=True),
    ]


def download_file():
    return [
        gr.Image(value=None),
        gr.UploadButton(visible=True),
        gr.Slider(1, 6, step=1, label="Batch size", interactive=True, value=4, visible=False),
        gr.Button("Run", visible=False),
        gr.DownloadButton(visible=True),
        gr.Image(value=None, visible=False),
    ]


def delete_directory(request: gr.Request):
    """Delete the user-specific directory when the user's session ends."""
    user_dir = current_dir / str(request.session_hash)
    if user_dir.exists():
        shutil.rmtree(user_dir)


def create_gradio_interface():
    with gr.Blocks(theme=gr.themes.Monochrome(), delete_cache=(60, 3600)) as demo:
        gr.HTML("""
                <div style="text-align: center;">
                <h1>Satellite Image Roofs Auto Annotation</h1>
                <p>Powered by a <a href="https://huggingface.co/Yifeng-Liu/rt-detr-finetuned-for-satellite-image-roofs-detection" target="_blank">fine-tuned RT-DETR model</a> and Fast-SAM model.</p>
                <p>📤 Upload an image or a folder containing images.</p>
                <p>🖼️ Images are saved in a user-specific directory and deleted when the user closes the page.</p>
                <p>⚙️ Each user can upload files with a maximum file size of 200 MB.</p>
                </div>
            """)
        with gr.Row():
            with gr.Column(scale=1):
                img_input = gr.Image(
                    interactive=True,
                    sources=["upload", "clipboard"],
                    show_share_button=True,
                    type='filepath',
                    label="Upload a single image",
                )
                upload_button = gr.UploadButton("Upload a folder", file_count="directory")
                batch_slider = gr.Slider(1, 6, step=1, label="Batch size", interactive=True, value=4, visible=False)
                run_button = gr.Button("Run", visible=False)
            with gr.Column(scale=1):
                img_output = gr.Image(label="Annotated Image", visible=False)
                download_button = gr.DownloadButton("Download annotation results", label="Download", visible=False)

        with gr.Row():
            examples = gr.Examples(
                examples=[["./img/example.jpg"]],
                inputs=[img_input],
                outputs=[upload_button, batch_slider, run_button, download_button, img_output],
                fn=upload_image,
                run_on_click=True,
            )

        upload_button.upload(upload_file, None, [img_input, upload_button, batch_slider, run_button, download_button, img_output])

        download_button.click(download_file, None, [img_input, upload_button, batch_slider, run_button, download_button, img_output])

        run_button.click(process_images,
                         [img_input, upload_button, batch_slider],
                         [upload_button, run_button, download_button, img_output])

        img_input.upload(upload_image, img_input, [upload_button, batch_slider, run_button, download_button, img_output])

        demo.unload(delete_directory)

    return demo


def inferencer_init():
    id2label = {0: 'building'}
    CONFIDENCE_TRESHOLD = 0.5
    return ModelInference(detector, detector_processor, segment_predictor, id2label, CONFIDENCE_TRESHOLD)


inferencer = inferencer_init()

if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.launch(max_file_size=200 * gr.FileSize.MB)