Spaces:
Running
Running
chores: clean up unncessary stuffs
Browse files
app.py
CHANGED
@@ -8,8 +8,6 @@ import torchaudio
|
|
8 |
# download for mecab
|
9 |
os.system("python -m unidic download")
|
10 |
|
11 |
-
# By using XTTS you agree to CPML license https://coqui.ai/cpml
|
12 |
-
os.environ["COQUI_TOS_AGREED"] = "1"
|
13 |
|
14 |
import csv
|
15 |
import datetime
|
@@ -35,7 +33,6 @@ from huggingface_hub import HfApi
|
|
35 |
|
36 |
# will use api to restart space on a unrecoverable error
|
37 |
api = HfApi(token=HF_TOKEN)
|
38 |
-
repo_id = "coqui/xtts"
|
39 |
|
40 |
# This will trigger downloading model
|
41 |
print("Downloading if not downloaded Coqui XTTS V2")
|
@@ -78,301 +75,158 @@ def predict(
|
|
78 |
prompt,
|
79 |
language,
|
80 |
audio_file_pth,
|
81 |
-
mic_file_path,
|
82 |
-
use_mic,
|
83 |
voice_cleanup,
|
84 |
-
no_lang_auto_detect,
|
85 |
-
agree,
|
86 |
):
|
87 |
-
if
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
)
|
92 |
-
|
93 |
-
return (
|
94 |
-
None,
|
95 |
-
None,
|
96 |
-
None,
|
97 |
-
None,
|
98 |
-
)
|
99 |
-
|
100 |
-
language_predicted = langid.classify(prompt)[
|
101 |
-
0
|
102 |
-
].strip() # strip need as there is space at end!
|
103 |
-
|
104 |
-
# tts expects chinese as zh-cn
|
105 |
-
if language_predicted == "zh":
|
106 |
-
# we use zh-cn
|
107 |
-
language_predicted = "zh-cn"
|
108 |
-
|
109 |
-
print(f"Detected language:{language_predicted}, Chosen language:{language}")
|
110 |
-
|
111 |
-
# After text character length 15 trigger language detection
|
112 |
-
if len(prompt) > 15:
|
113 |
-
# allow any language for short text as some may be common
|
114 |
-
# If user unchecks language autodetection it will not trigger
|
115 |
-
# You may remove this completely for own use
|
116 |
-
if language_predicted != language and not no_lang_auto_detect:
|
117 |
-
# Please duplicate and remove this check if you really want this
|
118 |
-
# Or auto-detector fails to identify language (which it can on pretty short text or mixed text)
|
119 |
-
gr.Warning(
|
120 |
-
f"It looks like your text isn’t the language you chose , if you’re sure the text is the same language you chose, please check disable language auto-detection checkbox"
|
121 |
-
)
|
122 |
-
|
123 |
-
return (
|
124 |
-
None,
|
125 |
-
None,
|
126 |
-
None,
|
127 |
-
None,
|
128 |
-
)
|
129 |
-
|
130 |
-
if use_mic == True:
|
131 |
-
if mic_file_path is not None:
|
132 |
-
speaker_wav = mic_file_path
|
133 |
-
else:
|
134 |
-
gr.Warning(
|
135 |
-
"Please record your voice with Microphone, or uncheck Use Microphone to use reference audios"
|
136 |
-
)
|
137 |
-
return (
|
138 |
-
None,
|
139 |
-
None,
|
140 |
-
None,
|
141 |
-
None,
|
142 |
-
)
|
143 |
-
|
144 |
-
else:
|
145 |
-
speaker_wav = audio_file_pth
|
146 |
-
|
147 |
-
# Filtering for microphone input, as it has BG noise, maybe silence in beginning and end
|
148 |
-
# This is fast filtering not perfect
|
149 |
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
152 |
|
153 |
-
|
154 |
-
lowpass_highpass = "lowpass=8000,highpass=75,"
|
155 |
-
else:
|
156 |
-
lowpass_highpass = ""
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
else:
|
162 |
-
trim_silence = ""
|
163 |
|
164 |
-
|
|
|
|
|
|
|
|
|
165 |
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
None,
|
170 |
-
None,
|
171 |
-
None,
|
172 |
-
None,
|
173 |
-
)
|
174 |
-
if len(prompt) > 200:
|
175 |
-
gr.Warning(
|
176 |
-
"Text length limited to 200 characters for this demo, please try shorter text. You can clone this space and edit code for your own usage"
|
177 |
-
)
|
178 |
-
return (
|
179 |
-
None,
|
180 |
-
None,
|
181 |
-
None,
|
182 |
-
None,
|
183 |
-
)
|
184 |
|
185 |
try:
|
186 |
-
|
187 |
-
t_latent = time.time()
|
188 |
-
|
189 |
-
# note diffusion_conditioning not used on hifigan (default mode), it will be empty but need to pass it to model.inference
|
190 |
-
try:
|
191 |
-
(
|
192 |
-
gpt_cond_latent,
|
193 |
-
speaker_embedding,
|
194 |
-
) = MODEL.get_conditioning_latents(
|
195 |
-
audio_path=speaker_wav,
|
196 |
-
gpt_cond_len=30,
|
197 |
-
gpt_cond_chunk_len=4,
|
198 |
-
max_ref_length=60,
|
199 |
-
)
|
200 |
-
except Exception as e:
|
201 |
-
print("Speaker encoding error", str(e))
|
202 |
-
gr.Warning(
|
203 |
-
"It appears something wrong with reference, did you unmute your microphone?"
|
204 |
-
)
|
205 |
-
return (
|
206 |
-
None,
|
207 |
-
None,
|
208 |
-
None,
|
209 |
-
None,
|
210 |
-
)
|
211 |
-
|
212 |
-
latent_calculation_time = time.time() - t_latent
|
213 |
-
# metrics_text=f"Embedding calculation time: {latent_calculation_time:.2f} seconds\n"
|
214 |
-
|
215 |
-
# temporary comma fix
|
216 |
-
prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)
|
217 |
-
|
218 |
-
wav_chunks = []
|
219 |
-
## Direct mode
|
220 |
-
|
221 |
-
print("I: Generating new audio...")
|
222 |
-
t0 = time.time()
|
223 |
-
out = MODEL.inference(
|
224 |
-
prompt,
|
225 |
-
language,
|
226 |
gpt_cond_latent,
|
227 |
speaker_embedding,
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
230 |
)
|
231 |
-
|
232 |
-
|
233 |
-
|
|
|
|
|
234 |
)
|
235 |
-
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
)
|
238 |
-
|
239 |
-
print(
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
|
|
|
|
|
|
247 |
prompt,
|
248 |
language,
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
)
|
254 |
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
print(
|
265 |
-
f"I: Time to generate audio: {round(inference_time*1000)} milliseconds"
|
266 |
)
|
267 |
-
#metrics_text += (
|
268 |
-
# f"Time to generate audio: {round(inference_time*1000)} milliseconds\n"
|
269 |
-
#)
|
270 |
-
|
271 |
-
wav = torch.cat(wav_chunks, dim=0)
|
272 |
-
print(wav.shape)
|
273 |
-
real_time_factor = (time.time() - t0) / wav.shape[0] * 24000
|
274 |
-
print(f"Real-time factor (RTF): {real_time_factor}")
|
275 |
-
metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
276 |
-
|
277 |
-
torchaudio.save("output.wav", wav.squeeze().unsqueeze(0).cpu(), 24000)
|
278 |
-
"""
|
279 |
-
|
280 |
-
except RuntimeError as e:
|
281 |
-
if "device-side assert" in str(e):
|
282 |
-
# cannot do anything on cuda device side error, need tor estart
|
283 |
-
print(
|
284 |
-
f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}",
|
285 |
-
flush=True,
|
286 |
-
)
|
287 |
-
gr.Warning("Unhandled Exception encounter, please retry in a minute")
|
288 |
-
print("Cuda device-assert Runtime encountered need restart")
|
289 |
-
if not DEVICE_ASSERT_DETECTED:
|
290 |
-
DEVICE_ASSERT_DETECTED = 1
|
291 |
-
DEVICE_ASSERT_PROMPT = prompt
|
292 |
-
DEVICE_ASSERT_LANG = language
|
293 |
-
|
294 |
-
# just before restarting save what caused the issue so we can handle it in future
|
295 |
-
# Uploading Error data only happens for unrecovarable error
|
296 |
-
error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S")
|
297 |
-
error_data = [
|
298 |
-
error_time,
|
299 |
-
prompt,
|
300 |
-
language,
|
301 |
-
audio_file_pth,
|
302 |
-
mic_file_path,
|
303 |
-
use_mic,
|
304 |
-
voice_cleanup,
|
305 |
-
no_lang_auto_detect,
|
306 |
-
agree,
|
307 |
-
]
|
308 |
-
error_data = [str(e) if type(e) != str else e for e in error_data]
|
309 |
-
print(error_data)
|
310 |
-
print(speaker_wav)
|
311 |
-
write_io = StringIO()
|
312 |
-
csv.writer(write_io).writerows([error_data])
|
313 |
-
csv_upload = write_io.getvalue().encode()
|
314 |
-
|
315 |
-
filename = error_time + "_" + str(uuid.uuid4()) + ".csv"
|
316 |
-
print("Writing error csv")
|
317 |
-
error_api = HfApi()
|
318 |
-
error_api.upload_file(
|
319 |
-
path_or_fileobj=csv_upload,
|
320 |
-
path_in_repo=filename,
|
321 |
-
repo_id="coqui/xtts-flagged-dataset",
|
322 |
-
repo_type="dataset",
|
323 |
-
)
|
324 |
-
|
325 |
-
# speaker_wav
|
326 |
-
print("Writing error reference audio")
|
327 |
-
speaker_filename = (
|
328 |
-
error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
|
329 |
-
)
|
330 |
-
error_api = HfApi()
|
331 |
-
error_api.upload_file(
|
332 |
-
path_or_fileobj=speaker_wav,
|
333 |
-
path_in_repo=speaker_filename,
|
334 |
-
repo_id="coqui/xtts-flagged-dataset",
|
335 |
-
repo_type="dataset",
|
336 |
-
)
|
337 |
-
|
338 |
-
# HF Space specific.. This error is unrecoverable need to restart space
|
339 |
-
space = api.get_space_runtime(repo_id=repo_id)
|
340 |
-
if space.stage != "BUILDING":
|
341 |
-
api.restart_space(repo_id=repo_id)
|
342 |
-
else:
|
343 |
-
print("TRIED TO RESTART but space is building")
|
344 |
|
|
|
|
|
|
|
|
|
345 |
else:
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
gr.Warning("Something unexpected happened please retry again.")
|
354 |
-
return (
|
355 |
-
None,
|
356 |
-
None,
|
357 |
-
None,
|
358 |
-
None,
|
359 |
)
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
|
|
376 |
|
377 |
|
378 |
title = "viXTTS Demo"
|
@@ -456,27 +310,6 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
456 |
info="Use your microphone to record audio",
|
457 |
label="Use Microphone for Reference",
|
458 |
)
|
459 |
-
use_mic_gr = gr.Checkbox(
|
460 |
-
label="Use Microphone",
|
461 |
-
value=False,
|
462 |
-
info="Notice: Microphone input may not work properly under traffic",
|
463 |
-
)
|
464 |
-
clean_ref_gr = gr.Checkbox(
|
465 |
-
label="Cleanup Reference Voice",
|
466 |
-
value=False,
|
467 |
-
info="This check can improve output if your microphone or reference voice is noisy",
|
468 |
-
)
|
469 |
-
auto_det_lang_gr = gr.Checkbox(
|
470 |
-
label="Do not use language auto-detect",
|
471 |
-
value=False,
|
472 |
-
info="Check to disable language auto-detection",
|
473 |
-
)
|
474 |
-
tos_gr = gr.Checkbox(
|
475 |
-
label="Agree",
|
476 |
-
value=False,
|
477 |
-
info="I agree to the terms of the CPML: https://coqui.ai/cpml",
|
478 |
-
)
|
479 |
-
|
480 |
tts_button = gr.Button("Send", elem_id="send-btn", visible=True)
|
481 |
|
482 |
with gr.Column():
|
@@ -492,10 +325,6 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
492 |
language_gr,
|
493 |
ref_gr,
|
494 |
mic_gr,
|
495 |
-
use_mic_gr,
|
496 |
-
clean_ref_gr,
|
497 |
-
auto_det_lang_gr,
|
498 |
-
tos_gr,
|
499 |
],
|
500 |
outputs=[video_gr, audio_gr, out_text_gr, ref_audio_gr],
|
501 |
)
|
|
|
8 |
# download for mecab
|
9 |
os.system("python -m unidic download")
|
10 |
|
|
|
|
|
11 |
|
12 |
import csv
|
13 |
import datetime
|
|
|
33 |
|
34 |
# will use api to restart space on a unrecoverable error
|
35 |
api = HfApi(token=HF_TOKEN)
|
|
|
36 |
|
37 |
# This will trigger downloading model
|
38 |
print("Downloading if not downloaded Coqui XTTS V2")
|
|
|
75 |
prompt,
|
76 |
language,
|
77 |
audio_file_pth,
|
|
|
|
|
78 |
voice_cleanup,
|
|
|
|
|
79 |
):
|
80 |
+
if language not in supported_languages:
|
81 |
+
gr.Warning(
|
82 |
+
f"Language you put {language} in is not in is not in our Supported Languages, please choose from dropdown"
|
83 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
return (
|
86 |
+
None,
|
87 |
+
None,
|
88 |
+
None,
|
89 |
+
None,
|
90 |
+
)
|
91 |
|
92 |
+
speaker_wav = audio_file_pth
|
|
|
|
|
|
|
93 |
|
94 |
+
if len(prompt) < 2:
|
95 |
+
gr.Warning("Please give a longer prompt text")
|
96 |
+
return (None, None, None, None)
|
|
|
|
|
97 |
|
98 |
+
if len(prompt) > 200:
|
99 |
+
gr.Warning(
|
100 |
+
"Text length limited to 200 characters for this demo, please try shorter text. You can clone this space and edit code for your own usage"
|
101 |
+
)
|
102 |
+
return (None, None, None, None)
|
103 |
|
104 |
+
try:
|
105 |
+
metrics_text = ""
|
106 |
+
t_latent = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
try:
|
109 |
+
(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
gpt_cond_latent,
|
111 |
speaker_embedding,
|
112 |
+
) = MODEL.get_conditioning_latents(
|
113 |
+
audio_path=speaker_wav,
|
114 |
+
gpt_cond_len=30,
|
115 |
+
gpt_cond_chunk_len=4,
|
116 |
+
max_ref_length=60,
|
117 |
)
|
118 |
+
|
119 |
+
except Exception as e:
|
120 |
+
print("Speaker encoding error", str(e))
|
121 |
+
gr.Warning(
|
122 |
+
"It appears something wrong with reference, did you unmute your microphone?"
|
123 |
)
|
124 |
+
return (None, None, None, None)
|
125 |
+
|
126 |
+
prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)
|
127 |
+
|
128 |
+
print("I: Generating new audio...")
|
129 |
+
t0 = time.time()
|
130 |
+
out = MODEL.inference(
|
131 |
+
prompt,
|
132 |
+
language,
|
133 |
+
gpt_cond_latent,
|
134 |
+
speaker_embedding,
|
135 |
+
repetition_penalty=5.0,
|
136 |
+
temperature=0.75,
|
137 |
+
)
|
138 |
+
inference_time = time.time() - t0
|
139 |
+
print(f"I: Time to generate audio: {round(inference_time*1000)} milliseconds")
|
140 |
+
metrics_text += (
|
141 |
+
f"Time to generate audio: {round(inference_time*1000)} milliseconds\n"
|
142 |
+
)
|
143 |
+
real_time_factor = (time.time() - t0) / out["wav"].shape[-1] * 24000
|
144 |
+
print(f"Real-time factor (RTF): {real_time_factor}")
|
145 |
+
metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
146 |
+
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
147 |
+
|
148 |
+
except RuntimeError as e:
|
149 |
+
if "device-side assert" in str(e):
|
150 |
+
# cannot do anything on cuda device side error, need tor estart
|
151 |
+
print(
|
152 |
+
f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}",
|
153 |
+
flush=True,
|
154 |
)
|
155 |
+
gr.Warning("Unhandled Exception encounter, please retry in a minute")
|
156 |
+
print("Cuda device-assert Runtime encountered need restart")
|
157 |
+
if not DEVICE_ASSERT_DETECTED:
|
158 |
+
DEVICE_ASSERT_DETECTED = 1
|
159 |
+
DEVICE_ASSERT_PROMPT = prompt
|
160 |
+
DEVICE_ASSERT_LANG = language
|
161 |
+
|
162 |
+
# just before restarting save what caused the issue so we can handle it in future
|
163 |
+
# Uploading Error data only happens for unrecovarable error
|
164 |
+
error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S")
|
165 |
+
error_data = [
|
166 |
+
error_time,
|
167 |
prompt,
|
168 |
language,
|
169 |
+
audio_file_pth,
|
170 |
+
voice_cleanup,
|
171 |
+
]
|
172 |
+
error_data = [str(e) if type(e) != str else e for e in error_data]
|
173 |
+
print(error_data)
|
174 |
+
print(speaker_wav)
|
175 |
+
write_io = StringIO()
|
176 |
+
csv.writer(write_io).writerows([error_data])
|
177 |
+
csv_upload = write_io.getvalue().encode()
|
178 |
+
|
179 |
+
filename = error_time + "_" + str(uuid.uuid4()) + ".csv"
|
180 |
+
print("Writing error csv")
|
181 |
+
error_api = HfApi()
|
182 |
+
error_api.upload_file(
|
183 |
+
path_or_fileobj=csv_upload,
|
184 |
+
path_in_repo=filename,
|
185 |
+
repo_id="coqui/xtts-flagged-dataset",
|
186 |
+
repo_type="dataset",
|
187 |
)
|
188 |
|
189 |
+
# speaker_wav
|
190 |
+
print("Writing error reference audio")
|
191 |
+
speaker_filename = error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
|
192 |
+
error_api = HfApi()
|
193 |
+
error_api.upload_file(
|
194 |
+
path_or_fileobj=speaker_wav,
|
195 |
+
path_in_repo=speaker_filename,
|
196 |
+
repo_id="coqui/xtts-flagged-dataset",
|
197 |
+
repo_type="dataset",
|
|
|
|
|
198 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
+
# HF Space specific.. This error is unrecoverable need to restart space
|
201 |
+
space = api.get_space_runtime(repo_id=repo_id)
|
202 |
+
if space.stage != "BUILDING":
|
203 |
+
api.restart_space(repo_id=repo_id)
|
204 |
else:
|
205 |
+
print("TRIED TO RESTART but space is building")
|
206 |
+
|
207 |
+
else:
|
208 |
+
if "Failed to decode" in str(e):
|
209 |
+
print("Speaker encoding error", str(e))
|
210 |
+
gr.Warning(
|
211 |
+
"It appears something wrong with reference, did you unmute your microphone?"
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
)
|
213 |
+
else:
|
214 |
+
print("RuntimeError: non device-side assert error:", str(e))
|
215 |
+
gr.Warning("Something unexpected happened please retry again.")
|
216 |
+
return (
|
217 |
+
None,
|
218 |
+
None,
|
219 |
+
None,
|
220 |
+
None,
|
221 |
+
)
|
222 |
+
return (
|
223 |
+
gr.make_waveform(
|
224 |
+
audio="output.wav",
|
225 |
+
),
|
226 |
+
"output.wav",
|
227 |
+
metrics_text,
|
228 |
+
speaker_wav,
|
229 |
+
)
|
230 |
|
231 |
|
232 |
title = "viXTTS Demo"
|
|
|
310 |
info="Use your microphone to record audio",
|
311 |
label="Use Microphone for Reference",
|
312 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
tts_button = gr.Button("Send", elem_id="send-btn", visible=True)
|
314 |
|
315 |
with gr.Column():
|
|
|
325 |
language_gr,
|
326 |
ref_gr,
|
327 |
mic_gr,
|
|
|
|
|
|
|
|
|
328 |
],
|
329 |
outputs=[video_gr, audio_gr, out_text_gr, ref_audio_gr],
|
330 |
)
|