|
import gradio as gr |
|
import numpy as np |
|
import os |
|
import torch |
|
from datasets import load_dataset |
|
|
|
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline |
|
from speechbrain.pretrained import EncoderClassifier |
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl") |
|
|
|
model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device) |
|
vocoder = SpeechT5HifiGan.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device) |
|
|
|
|
|
|
|
|
|
spk_model_name = "speechbrain/spkrec-xvect-voxceleb" |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
speaker_model = EncoderClassifier.from_hparams( |
|
source=spk_model_name, |
|
run_opts={"device": device}, |
|
savedir=os.path.join("/tmp", spk_model_name), |
|
) |
|
|
|
def create_speaker_embedding(waveform): |
|
with torch.no_grad(): |
|
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform)) |
|
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2) |
|
speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy() |
|
return speaker_embeddings |
|
|
|
|
|
dataset_nl = load_dataset("facebook/voxpopuli", "nl", split="train", streaming=True) |
|
data_list = [] |
|
speaker_embeddings_list = [] |
|
|
|
for i, data in enumerate(iter(dataset_nl)): |
|
|
|
if(i > 5): |
|
break |
|
data_list.append(data) |
|
|
|
text = data["raw_text"] |
|
|
|
speaker_embeddings = create_speaker_embedding(data["audio"]["array"]) |
|
speaker_embeddings = torch.tensor(speaker_embeddings)[None] |
|
speaker_embeddings_list.append(speaker_embeddings) |
|
|
|
|
|
speaker_embeddings = speaker_embeddings_list[4] |
|
|
|
def translate(audio): |
|
|
|
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"language":"<|nl|>","task": "transcribe"}) |
|
return outputs["text"] |
|
|
|
|
|
def synthesise(text): |
|
|
|
inputs = processor(text=text, return_tensors="pt", truncation=True, max_length=200) |
|
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) |
|
return speech.cpu() |
|
|
|
|
|
def speech_to_speech_translation(audio): |
|
translated_text = translate(audio) |
|
synthesised_speech = synthesise(translated_text) |
|
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) |
|
return 16000, synthesised_speech |
|
|
|
|
|
title = "Cascaded STST" |
|
description = """ |
|
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's |
|
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech: |
|
|
|
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") |
|
""" |
|
|
|
demo = gr.Blocks() |
|
|
|
mic_translate = gr.Interface( |
|
fn=speech_to_speech_translation, |
|
inputs=gr.Audio(source="microphone", type="filepath"), |
|
outputs=gr.Audio(label="Generated Speech", type="numpy"), |
|
title=title, |
|
description=description, |
|
) |
|
|
|
file_translate = gr.Interface( |
|
fn=speech_to_speech_translation, |
|
inputs=gr.Audio(source="upload", type="filepath"), |
|
outputs=gr.Audio(label="Generated Speech", type="numpy"), |
|
examples=[["./example.wav"]], |
|
title=title, |
|
description=description, |
|
) |
|
|
|
with demo: |
|
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) |
|
|
|
demo.launch() |
|
|