YCHuang2112's picture
Update app.py
09896ad
raw
history blame
4.38 kB
import gradio as gr
import numpy as np
import os
import torch
from datasets import load_dataset
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
from speechbrain.pretrained import EncoderClassifier
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
# load text-to-speech checkpoint and speaker embeddings
# processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
# model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
# vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
vocoder = SpeechT5HifiGan.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
# embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
# speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
device = "cuda" if torch.cuda.is_available() else "cpu"
speaker_model = EncoderClassifier.from_hparams(
source=spk_model_name,
run_opts={"device": device},
savedir=os.path.join("/tmp", spk_model_name),
)
def create_speaker_embedding(waveform):
with torch.no_grad():
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform))
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy()
return speaker_embeddings
dataset_nl = load_dataset("facebook/voxpopuli", "nl", split="train", streaming=True)
data_list = []
speaker_embeddings_list = []
for i, data in enumerate(iter(dataset_nl)):
# print(i)
if(i > 5):
break
data_list.append(data)
# data = next(iter(dataset_nl))
text = data["raw_text"]
# print(data)
speaker_embeddings = create_speaker_embedding(data["audio"]["array"])
speaker_embeddings = torch.tensor(speaker_embeddings)[None]
speaker_embeddings_list.append(speaker_embeddings)
speaker_embeddings = speaker_embeddings_list[4]
def translate(audio):
# outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"language":"<|nl|>","task": "transcribe"})
return outputs["text"]
def synthesise(text):
#inputs = processor(text=text, return_tensors="pt")
inputs = processor(text=text, return_tensors="pt", truncation=True, max_length=200)
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
return speech.cpu()
def speech_to_speech_translation(audio):
translated_text = translate(audio)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech
title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
examples=[["./example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
demo.launch()