from .common.train import train from .semantic_enhanced_matting.model import model from .common.optimizer import optimizer from .common.scheduler import lr_multiplier from .semantic_enhanced_matting.dataloader import dataloader from modeling.decoder.unet_detail_capture import MattingDetailDecoder from detectron2.config import LazyCall as L from sam2.build_sam import build_sam2 model.sam_model.model_type = 'vit_l' model.sam_model.checkpoint = None model.vis_period = 200 model.output_dir = '?' train.max_iter = 60000 train.eval_period = int(train.max_iter * 1 / 10) train.checkpointer.period = int(train.max_iter * 1 / 10) train.checkpointer.max_to_keep = 1 optimizer.lr = 5e-5 lr_multiplier.scheduler.values = [1.0, 0.5, 0.2] lr_multiplier.scheduler.milestones = [0.5, 0.75] lr_multiplier.scheduler.num_updates = train.max_iter lr_multiplier.warmup_length = 250 / train.max_iter train.output_dir = './work_dirs/SEMat_SAM2' model.sam2 = True model.sam_model = L(build_sam2)( config_file = 'sam2_hiera_l.yaml', ckpt_path = None, device = "cpu", bbox_mask_matting_token = True, mode="train", upscaled_embedding_res_add = False ) model.lora_rank = 16 model.lora_alpha = 16 model.matting_decoder = L(MattingDetailDecoder)( vit_intern_feat_in = 1024, vit_intern_feat_index = [0, 1, 2, 3], norm_type = 'SyncBN', block_num = 2, img_feat_in = 6, norm_mask_logits = 6.5, sam2_multi_scale_feates = True ) model.backbone_bbox_prompt = 'bbox' model.backbone_bbox_prompt_loc = [2, 3] model.backbone_bbox_prompt_loss_weight = 1.0 model.matting_token = True model.sam_hq_token_reg = 0.2 model.reg_w_bce_loss = True model.matting_token_sup = 'trimap' model.matting_token_sup_loss_weight = 0.05 model.trimap_loss_type = 'NGHM'