Spaces:
Runtime error
Runtime error
File size: 7,825 Bytes
e055116 ef8d465 e055116 ef8d465 e055116 ef8d465 e055116 ef8d465 e055116 ef8d465 e055116 8eee1ba e055116 2496621 e055116 e4228c4 e055116 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import gradio as gr
import io
import os
import warnings
from PIL import Image
from stability_sdk import client
import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation
import google.generativeai as genai
genai.configure(api_key=os.environ['genai_img'])
# Replace with your API key
stability_api = client.StabilityInference(
key=os.environ['STABILITY_KEY'],
verbose=True,
engine="stable-diffusion-xl-1024-v1-0", # You can experiment with different engines
)
def generate_image_from_text(prompt):
"""Generates an image from a text prompt."""
try:
answers = stability_api.generate(
prompt=prompt,
seed=12345, # You can adjust the seed for different results
steps=30, # Adjust the number of steps for quality/speed trade-off
cfg_scale=8.0,
width=512, # Adjust width and height as needed
height=512,
sampler=generation.SAMPLER_K_DPMPP_2M
)
for resp in answers:
for artifact in resp.artifacts:
if artifact.finish_reason == generation.FILTER:
warnings.warn("Safety filter triggered. Please modify the prompt.")
return None
if artifact.type == generation.ARTIFACT_IMAGE:
img = Image.open(io.BytesIO(artifact.binary))
return img
except Exception as e:
print(f"Error during image generation: {e}")
return None
def generate_image_from_image(init_image, start_schedule, prompt):
"""Generates an image using the provided initial image, start schedule, and prompt."""
try:
answers = stability_api.generate(
prompt=prompt,
init_image=init_image,
start_schedule=start_schedule,
seed=12345, # You can adjust the seed for different results
steps=30, # Adjust the number of steps for quality/speed trade-off
cfg_scale=8.0,
width=512, # Adjust width and height as needed
height=512,
sampler=generation.SAMPLER_K_DPMPP_2M
)
for resp in answers:
for artifact in resp.artifacts:
if artifact.finish_reason == generation.FILTER:
warnings.warn("Safety filter triggered. Please modify the prompt.")
return None
if artifact.type == generation.ARTIFACT_IMAGE:
img = Image.open(io.BytesIO(artifact.binary))
return img
except Exception as e:
print(f"Error during image generation: {e}")
return None
# Placeholder for model loading (explained later)
def load_model():
# Replace with your Google Generative AI (GenAI) model loading logic
# Here's an example structure (assuming GenAI is available):
import pathlib
# Set up the model (replace with your actual API key and model name)
generation_config = {
"temperature": 1,
"top_p": 0.95,
"top_k": 64,
"max_output_tokens": 8192,
}
safety_settings = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
]
model = genai.GenerativeModel(
model_name="gemini-1.5-pro-latest",
generation_config=generation_config,
safety_settings=safety_settings,
)
return model
# Function to handle user input and model interaction
def chat(image, query):
# Load the model on the first call
if not hasattr(chat, 'model'):
chat.model = load_model()
# Process the image (replace with your image processing logic)
# Here's a placeholder for potential image processing:
processed_image = image # Assuming no processing needed for now
# Start or continue the conversation
convo = chat.model.start_chat(history=[
{
"role": "user",
"parts": [processed_image],
},
])
response = convo.send_message(query)
# return str(response)
print(response)
return response.text
# Extract only the text content from the response
# Gradio interface definition
chat_interface = gr.Interface(
fn=chat,
inputs=[gr.Image(type="pil"), gr.Textbox(lines=4)],
outputs="text",
title="Sustainable Interior Design Chatbot",
description="Ask the AI for sustainable design suggestions based on an image of your room.",
)
with gr.Blocks() as demo:
gr.Markdown("**Baith-al-suroor بَیتُ الْسرور 🏡🤖**, Transform your space with the power of artificial intelligence." ) # Add title with emojis
gr.Markdown("Baith al suroor بَیتُ الْسرور (house of happiness in Arabic) 🏡🤖 is a deeptech app that uses the power of artificial intelligence to transform your space, leveraging diffusion models and powerful Gemini model , it can generate descriptions of your desired design, and the Stable Diffusion algorithm creates relevant images to bring your vision to your thoughts. Give Baith AI a try and see how it can elevate your interior design.--if you want to scale / reaserch / build mobile app / get secret key for research purpose on this space konnect me @[Xhaheen](https://www.linkedin.com/in/sallu-mandya/)")
gr.Markdown("## Generate Images with Stability AI")
with gr.Accordion("Text-to-Image", open=False):
with gr.Row():
text_prompt = gr.Textbox(label="Prompt", lines=2,value='Zen-style (bedroom interior) With storage bench or ottoman and bed and accent chair and headboard and bedside table or night stand and night light and mirror and plant. . With natural light and serenity and harmony and clutter free and clean lines and mimimalist and Asian zen interior and Japanese minimalist interior and Japanese interior. . Cinematic photo, highly detailed, cinematic lighting, ultra-detailed, ultrarealistic, photorealism, 8k. Zen interior design style' ,placeholder="Enter your text prompt here...")
generate_text_button = gr.Button("Generate")
text_output = gr.Image(type="pil", label="Generated Image")
with gr.Accordion("Image-to-Image", open=False):
with gr.Row():
image_input = gr.Image(type="pil", label="Initial Image")
prompt_strength = gr.Slider(0.0, 1.0, value=0.85, label="Prompt Strength")
with gr.Row():
image_prompt = gr.Textbox(label="Prompt", lines=2,value='Zen-style ( interior) With storage bench or ottoman and bed and accent chair and headboard and bedside table or night stand and night light and mirror and plant. . With natural light and serenity and harmony and clutter free and clean lines and mimimalist and Asian zen interior and Japanese minimalist interior and Japanese interior. . Cinematic photo, highly detailed, cinematic lighting, ultra-detailed, ultrarealistic, photorealism, 8k. Zen interior design style' , placeholder="Enter your text prompt here...")
generate_image_button = gr.Button("Generate")
image_output = gr.Image(type="pil", label="Generated Image")
with gr.Accordion("Chat with AI", open=False):
chat_interface.render()
generate_text_button.click(generate_image_from_text, text_prompt, text_output)
generate_image_button.click(generate_image_from_image, [image_input, prompt_strength, image_prompt], image_output)
demo.launch(debug=True) |