File size: 6,514 Bytes
ef8d465
cf0a16c
227fdeb
ef8d465
2a06a6d
4dd61ad
19e6ee3
4dd61ad
ef8d465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2496621
75fd8f4
886f260
6f2ea54
 
886f260
6f2ea54
 
 
ef8d465
6f2ea54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef8d465
 
 
 
 
 
75fd8f4
ef8d465
 
 
 
 
 
 
b4b9869
9c6d5ac
ef8d465
 
88efdef
ef8d465
 
 
68d749e
e71a009
 
c9392f8
144b528
206ab00
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
#https://huggingface.co/spaces/Galis/room_interior_quality/tree/main
STABILITY_HOST = os.environ["STABILITY_HOST"]
STABILITY_KEY = os.environ["STABILITY_KEY"]
cohere_key = os.environ["cohere_key"]
import cohere
import random
co = cohere.Client(cohere_key)
import io
import os
import warnings

from IPython.display import display
from PIL import Image
from stability_sdk import client
import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation
from PIL import Image

stability_api = client.StabilityInference(
    key=os.environ['STABILITY_KEY'], 
    verbose=True,
)


def generate_caption_keywords(prompt, model='command-xlarge-20221108', max_tokens=200, temperature=random.uniform(0.1, 2), k=0, p=0.75, frequency_penalty=0, presence_penalty=0, stop_sequences=[]):
    
    response = co.generate(
      model=model,
      prompt=prompt,
      max_tokens=max_tokens,
      temperature=temperature,
      k=k,
      p=p,
      frequency_penalty=frequency_penalty,
      presence_penalty=presence_penalty,
      stop_sequences=stop_sequences,
      return_likelihoods='NONE')

    def highlight_keywords(text):
        keywords = []
        text = text.lower()
        text = re.sub(r'[^a-z\s]', '', text) # remove punctuation
        text = re.sub(r'\b(the|and|of)\b', '', text) # remove stop words
        words = text.split()
        for word in words:
            if word not in keywords:
                keywords.append(word)
        return keywords

    caption = response.generations[0].text
    keywords = highlight_keywords(caption)
    keywords_string = ', '.join(keywords)

    return caption, keywords_string


 
def img2img( path ,design,x_prompt,alt_prompt,strength,guidance_scale,steps):
    # Read the size of the image
    img = Image.open(path)
    width, height = img.size

    # Calculate the new size of the image, making sure that the width and height are multiples of 64
    new_width = ((width + 63) // 64) * 64
    new_height = ((height + 63) // 64) * 64

    # Resize the image
    img = img.resize((new_width, new_height), resample=Image.Resampling.BILINEAR)

    max_attempts = 5 # maximum number of attempts before giving up
    attempts = 0 # current number of attempts
    while attempts < max_attempts:
        try:
            if x_prompt == True:
                prompt = alt_prompt
            else:
                try:
                    caption, keywords = generate_caption_keywords(design)
                    prompt = keywords
                except:
                    prompt = design

            # call the GRPC service to generate the image
            answers = stability_api.generate(
                prompt,
                init_image=img,
                seed=54321,
                start_schedule=strength,
            )
            for resp in answers:
                for artifact in resp.artifacts:
                    if artifact.finish_reason == generation.FILTER:
                        warnings.warn(
                            "Your request activated the API's safety filters and could not be processed."
                            "Please modify the prompt and try again.")
                    if artifact.type == generation.ARTIFACT_IMAGE:
                        img2 = Image.open(io.BytesIO(artifact.binary))
                        img2 = img2.resize((new_width, new_height), resample=Image.Resampling.BILINEAR)
                        img2.save("new_image.jpg")
                        print(type(img2))
            # if the function reaches this point, it means it succeeded, so we can return the result
            return img2
        except Exception as e:
            # if an exception is thrown, we will increment the attempts counter and try again
            attempts += 1
            print("Attempt {} failed: {}".format(attempts, e))
    # if the function reaches this point, it means the maximum number of attempts has been reached, so we will raise an exception
    raise Exception("Maximum number of attempts reached, unable to generate image")



import gradio as gr  

gr.Interface(img2img,  [gr.Image(source="upload", type="filepath", label="Input Image"),
    
                        gr.Dropdown(['interior design of living room', 
                                         'interior design of gaming room',
                                         'interior design of kitchen',
                                         'interior design of bedroom',
                                         'interior design of bathroom',
                                         'interior design of office',
                                         'interior design of meeting room',
                                         'interior design of personal room'],label="Click here to select your design by Cohere command Langauge model",value = 'interior design'), 
                        gr.Checkbox(label="Check Custom design if you already have prompt",value = False),

                        gr.Textbox(label = ' Input custom Prompt Text'),
                        gr.Slider(label='Strength , try with multiple value betweens 0.55 to 0.9 ', minimum = 0, maximum = 1, step = .01, value = .65),
                        gr.Slider(2, 15, value = 7, label = 'Guidence Scale'),
                        gr.Slider(10, 50, value = 50, step = 1, label = 'Number of Iterations')
                        ], 
                        gr.Image(), 
             examples =[['1.png','interior design of living room','False','interior design',0.6,7,50],
                  ['2.png','interior design of hall ','False','interior design',0.7,7,50],
                  ['3.png','interior design of bedroom','False','interior design',0.6,7,50]],title = "" +'**Baith-al-suroor بَیتُ الْسرور  🏡🤖**, Transform your space with the power of artificial intelligence. '+ "",
                                    description="Baith al suroor بَیتُ الْسرور  (house of happiness in Arabic)  🏡🤖  is a simple app that uses the power of artificial intelligence to transform your space. With the Cohere language Command model, it can generate descriptions of your desired design, and the Stable Diffusion algorithm creates relevant images to bring your vision to your thoughts. Give Baith AI a try and see how it can elevate your interior design.--if you want to scale / reaserch / build mobile app on this space konnect me   @[here](https://www.linkedin.com/in/sallu-mandya/)").launch( debug = True)