Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,146 +5,122 @@ import os
|
|
5 |
import requests
|
6 |
import base64
|
7 |
|
8 |
-
# 假设 libra_eval 在你的 python 包 libra.eval 中
|
9 |
from libra.eval import libra_eval
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
image_file=image_files,
|
21 |
-
query=prompt,
|
22 |
-
temperature=0.9,
|
23 |
-
top_p=0.8,
|
24 |
-
max_new_tokens=512
|
25 |
-
)
|
26 |
-
print(result)
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
# uploaded_prior: str,
|
32 |
-
# temperature: float,
|
33 |
-
# top_p: float,
|
34 |
-
# num_beams: int,
|
35 |
-
# max_new_tokens: int
|
36 |
-
# ) -> str:
|
37 |
-
# """
|
38 |
-
# 核心推理函数:
|
39 |
-
# 1. 仅通过用户上传的图片获取图像文件路径
|
40 |
-
# 2. 调用 libra_eval 来生成报告描述
|
41 |
-
# 3. 返回生成的结果或错误消息
|
42 |
-
# """
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
# # 模型路径
|
49 |
-
# model_path = "X-iZhang/libra-v1.0-7b"
|
50 |
-
# conv_mode = "libra_v1"
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
# model_path=model_path,
|
57 |
-
# model_base=None, # 如果有必要,可指定基础模型
|
58 |
-
# image_file=[uploaded_current, uploaded_prior], # 两张本地图片路径
|
59 |
-
# query=prompt,
|
60 |
-
# temperature=temperature,
|
61 |
-
# top_p=top_p,
|
62 |
-
# num_beams=num_beams,
|
63 |
-
# length_penalty=1.0,
|
64 |
-
# num_return_sequences=1,
|
65 |
-
# conv_mode=conv_mode,
|
66 |
-
# max_new_tokens=max_new_tokens
|
67 |
-
# )
|
68 |
-
# print("After calling libra_eval, result:", output)
|
69 |
-
# return output
|
70 |
-
# except Exception as e:
|
71 |
-
# return f"An error occurred: {str(e)}"
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
# # 参数调节
|
97 |
-
# with gr.Row():
|
98 |
-
# temperature_slider = gr.Slider(
|
99 |
-
# label="Temperature",
|
100 |
-
# minimum=0.1,
|
101 |
-
# maximum=1.0,
|
102 |
-
# step=0.1,
|
103 |
-
# value=0.7
|
104 |
-
# )
|
105 |
-
# top_p_slider = gr.Slider(
|
106 |
-
# label="Top P",
|
107 |
-
# minimum=0.1,
|
108 |
-
# maximum=1.0,
|
109 |
-
# step=0.1,
|
110 |
-
# value=0.8
|
111 |
-
# )
|
112 |
-
# num_beams_slider = gr.Slider(
|
113 |
-
# label="Number of Beams",
|
114 |
-
# minimum=1,
|
115 |
-
# maximum=20,
|
116 |
-
# step=1,
|
117 |
-
# value=2
|
118 |
-
# )
|
119 |
-
# max_tokens_slider = gr.Slider(
|
120 |
-
# label="Max New Tokens",
|
121 |
-
# minimum=10,
|
122 |
-
# maximum=4096,
|
123 |
-
# step=10,
|
124 |
-
# value=128
|
125 |
-
# )
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
# )
|
132 |
|
133 |
-
# # 点击按钮时触发的推理逻辑
|
134 |
-
# generate_button = gr.Button("Generate Description")
|
135 |
-
# generate_button.click(
|
136 |
-
# fn=generate_radiology_description,
|
137 |
-
# inputs=[
|
138 |
-
# prompt_input,
|
139 |
-
# uploaded_current,
|
140 |
-
# uploaded_prior,
|
141 |
-
# temperature_slider,
|
142 |
-
# top_p_slider,
|
143 |
-
# num_beams_slider,
|
144 |
-
# max_tokens_slider
|
145 |
-
# ],
|
146 |
-
# outputs=output_text
|
147 |
-
# )
|
148 |
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import requests
|
6 |
import base64
|
7 |
|
|
|
8 |
from libra.eval import libra_eval
|
9 |
|
10 |
+
def generate_radiology_description(
|
11 |
+
prompt: str,
|
12 |
+
uploaded_current: str,
|
13 |
+
uploaded_prior: str,
|
14 |
+
temperature: float,
|
15 |
+
top_p: float,
|
16 |
+
num_beams: int,
|
17 |
+
max_new_tokens: int
|
18 |
+
) -> str:
|
19 |
|
20 |
+
|
21 |
+
if not uploaded_current or not uploaded_prior:
|
22 |
+
return "Please upload both current and prior images."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
|
25 |
+
model_path = "X-iZhang/libra-v1.0-7b"
|
26 |
+
conv_mode = "libra_v1"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
try:
|
29 |
+
|
30 |
+
print("Before calling libra_eval")
|
31 |
+
output = libra_eval(
|
32 |
+
model_path=model_path,
|
33 |
+
model_base=None,
|
34 |
+
image_file=[uploaded_current, uploaded_prior],
|
35 |
+
query=prompt,
|
36 |
+
temperature=temperature,
|
37 |
+
top_p=top_p,
|
38 |
+
num_beams=num_beams,
|
39 |
+
length_penalty=1.0,
|
40 |
+
num_return_sequences=1,
|
41 |
+
conv_mode=conv_mode,
|
42 |
+
max_new_tokens=max_new_tokens
|
43 |
+
)
|
44 |
+
print("After calling libra_eval, result:", output)
|
45 |
+
return output
|
46 |
+
except Exception as e:
|
47 |
+
return f"An error occurred: {str(e)}"
|
48 |
|
|
|
|
|
|
|
49 |
|
50 |
+
with gr.Blocks() as demo:
|
51 |
+
|
52 |
+
gr.Markdown("# Libra Radiology Report Generator (Local Upload Only)")
|
53 |
+
gr.Markdown("Upload **Current** and **Prior** images below to generate a radiology description using the Libra model.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
|
56 |
+
prompt_input = gr.Textbox(
|
57 |
+
label="Prompt",
|
58 |
+
value="Describe the key findings in these two images."
|
59 |
+
)
|
60 |
|
61 |
+
|
62 |
+
with gr.Row():
|
63 |
+
uploaded_current = gr.Image(
|
64 |
+
label="Upload Current Image",
|
65 |
+
type="filepath"
|
66 |
+
)
|
67 |
+
uploaded_prior = gr.Image(
|
68 |
+
label="Upload Prior Image",
|
69 |
+
type="filepath"
|
70 |
+
)
|
71 |
|
72 |
+
|
73 |
+
with gr.Row():
|
74 |
+
temperature_slider = gr.Slider(
|
75 |
+
label="Temperature",
|
76 |
+
minimum=0.1,
|
77 |
+
maximum=1.0,
|
78 |
+
step=0.1,
|
79 |
+
value=0.7
|
80 |
+
)
|
81 |
+
top_p_slider = gr.Slider(
|
82 |
+
label="Top P",
|
83 |
+
minimum=0.1,
|
84 |
+
maximum=1.0,
|
85 |
+
step=0.1,
|
86 |
+
value=0.8
|
87 |
+
)
|
88 |
+
num_beams_slider = gr.Slider(
|
89 |
+
label="Number of Beams",
|
90 |
+
minimum=1,
|
91 |
+
maximum=20,
|
92 |
+
step=1,
|
93 |
+
value=2
|
94 |
+
)
|
95 |
+
max_tokens_slider = gr.Slider(
|
96 |
+
label="Max New Tokens",
|
97 |
+
minimum=10,
|
98 |
+
maximum=4096,
|
99 |
+
step=10,
|
100 |
+
value=128
|
101 |
+
)
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
output_text = gr.Textbox(
|
105 |
+
label="Generated Description",
|
106 |
+
lines=10
|
107 |
+
)
|
|
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
generate_button = gr.Button("Generate Description")
|
111 |
+
generate_button.click(
|
112 |
+
fn=generate_radiology_description,
|
113 |
+
inputs=[
|
114 |
+
prompt_input,
|
115 |
+
uploaded_current,
|
116 |
+
uploaded_prior,
|
117 |
+
temperature_slider,
|
118 |
+
top_p_slider,
|
119 |
+
num_beams_slider,
|
120 |
+
max_tokens_slider
|
121 |
+
],
|
122 |
+
outputs=output_text
|
123 |
+
)
|
124 |
+
|
125 |
+
if __name__ == "__main__":
|
126 |
+
demo.launch()
|