FSFM-3C
commited on
Commit
·
4413e3a
1
Parent(s):
f711a0a
modified: app.py
Browse files
app.py
CHANGED
@@ -7,8 +7,10 @@
|
|
7 |
# pip uninstall nvidia_cublas_cu11
|
8 |
|
9 |
import sys
|
|
|
10 |
sys.path.append('..')
|
11 |
import os
|
|
|
12 |
os.system(f'pip install dlib')
|
13 |
import torch
|
14 |
import numpy as np
|
@@ -24,14 +26,13 @@ from engine_finetune import test_all
|
|
24 |
import dlib
|
25 |
from huggingface_hub import hf_hub_download
|
26 |
|
27 |
-
|
28 |
P = os.path.abspath(__file__)
|
29 |
FRAME_SAVE_PATH = os.path.join(P[:-6], 'frame')
|
30 |
CKPT_SAVE_PATH = os.path.join(P[:-6], 'checkpoints')
|
31 |
CKPT_LIST = ['DfD-Checkpoint_Fine-tuned_on_FF++',
|
32 |
'FAS-Checkpoint_Fine-tuned_on_MCIO']
|
33 |
CKPT_NAME = {'DfD-Checkpoint_Fine-tuned_on_FF++': 'finetuned_models/FF++_c23_32frames/checkpoint-min_val_loss.pth',
|
34 |
-
'FAS-Checkpoint_Fine-tuned_on_MCIO': 'finetuned_models/MCIO_protocol/Both_MCIO/checkpoint-min_val_loss.pth'
|
35 |
os.makedirs(FRAME_SAVE_PATH, exist_ok=True)
|
36 |
os.makedirs(CKPT_SAVE_PATH, exist_ok=True)
|
37 |
|
@@ -170,13 +171,14 @@ model = models_vit.__dict__['vit_base_patch16'](
|
|
170 |
global_pool=args.global_pool,
|
171 |
)
|
172 |
|
|
|
173 |
def load_model(ckpt):
|
174 |
-
if ckpt=='choose from here' or 'continuously updating...':
|
175 |
return gr.update()
|
176 |
args.resume = os.path.join(CKPT_SAVE_PATH, ckpt)
|
177 |
if os.path.isfile(args.resume) == False:
|
178 |
hf_hub_download(local_dir=CKPT_SAVE_PATH,
|
179 |
-
repo_id='Wolowolo/fsfm-3c/'+ CKPT_NAME[ckpt],
|
180 |
filename=ckpt)
|
181 |
checkpoint = torch.load(args.resume, map_location='cpu')
|
182 |
model.load_state_dict(checkpoint['model'])
|
@@ -230,14 +232,16 @@ def extract_face(frame):
|
|
230 |
return Image.fromarray(cropped_face)
|
231 |
else:
|
232 |
return None
|
233 |
-
|
234 |
-
|
235 |
def get_frame_index_uniform_sample(total_frame_num, extract_frame_num):
|
236 |
interval = np.linspace(0, total_frame_num - 1, num=extract_frame_num, dtype=int)
|
237 |
return interval.tolist()
|
238 |
|
239 |
|
240 |
import cv2
|
|
|
|
|
241 |
def extract_face_from_fixed_num_frames(src_video, dst_path, num_frames=None, device='cpu'):
|
242 |
"""
|
243 |
1) extract specific num of frames from videos in [1st(index 0) frame, last frame] with uniform sample interval
|
@@ -255,7 +259,7 @@ def extract_face_from_fixed_num_frames(src_video, dst_path, num_frames=None, dev
|
|
255 |
for frame_index in frame_indices:
|
256 |
video_capture.set(cv2.CAP_PROP_POS_FRAMES, frame_index)
|
257 |
ret, frame = video_capture.read()
|
258 |
-
image = Image.fromarray(cv2.cvtColor(frame,cv2.COLOR_BGR2RGB))
|
259 |
img = extract_face(image)
|
260 |
if img == None:
|
261 |
continue
|
@@ -263,27 +267,27 @@ def extract_face_from_fixed_num_frames(src_video, dst_path, num_frames=None, dev
|
|
263 |
if not ret:
|
264 |
continue
|
265 |
save_img_name = f"frame_{frame_index}.png"
|
266 |
-
|
267 |
img.save(os.path.join(dst_path, '0', save_img_name))
|
268 |
# cv2.imwrite(os.path.join(dst_path, '0', save_img_name), frame)
|
269 |
-
|
270 |
video_capture.release()
|
271 |
# cv2.destroyAllWindows()
|
272 |
|
273 |
|
274 |
def FSFM3C_video_detection(video):
|
275 |
model.to(device)
|
276 |
-
|
277 |
# extract frames
|
278 |
num_frames = 32
|
279 |
-
|
280 |
files = os.listdir(FRAME_SAVE_PATH)
|
281 |
num_files = len(files)
|
282 |
frame_path = os.path.join(FRAME_SAVE_PATH, str(num_files))
|
283 |
os.makedirs(frame_path, exist_ok=True)
|
284 |
os.makedirs(os.path.join(frame_path, '0'), exist_ok=True)
|
285 |
extract_face_from_fixed_num_frames(video, frame_path, num_frames=num_frames, device=device)
|
286 |
-
|
287 |
args.data_path = frame_path
|
288 |
args.batch_size = 32
|
289 |
dataset_val = build_dataset(is_train=False, args=args)
|
@@ -295,7 +299,7 @@ def FSFM3C_video_detection(video):
|
|
295 |
pin_memory=args.pin_mem,
|
296 |
drop_last=False
|
297 |
)
|
298 |
-
|
299 |
frame_preds_list, video_y_pred_list = test_all(data_loader_val, model, device)
|
300 |
|
301 |
return video_y_pred_list
|
@@ -303,20 +307,20 @@ def FSFM3C_video_detection(video):
|
|
303 |
|
304 |
def FSFM3C_image_detection(image):
|
305 |
model.to(device)
|
306 |
-
|
307 |
files = os.listdir(FRAME_SAVE_PATH)
|
308 |
num_files = len(files)
|
309 |
-
frame_path = os.path.join(FRAME_SAVE_PATH, str(num_files))
|
310 |
os.makedirs(frame_path, exist_ok=True)
|
311 |
os.makedirs(os.path.join(frame_path, '0'), exist_ok=True)
|
312 |
-
|
313 |
save_img_name = f"frame_0.png"
|
314 |
img = extract_face(image)
|
315 |
if img is None:
|
316 |
return ['Invalid Input']
|
317 |
img = img.resize((224, 224), Image.BICUBIC)
|
318 |
img.save(os.path.join(frame_path, '0', save_img_name))
|
319 |
-
|
320 |
args.data_path = frame_path
|
321 |
args.batch_size = 1
|
322 |
dataset_val = build_dataset(is_train=False, args=args)
|
@@ -328,7 +332,7 @@ def FSFM3C_image_detection(image):
|
|
328 |
pin_memory=args.pin_mem,
|
329 |
drop_last=False
|
330 |
)
|
331 |
-
|
332 |
frame_preds_list, video_y_pred_list = test_all(data_loader_val, model, device)
|
333 |
|
334 |
return video_y_pred_list
|
@@ -336,7 +340,8 @@ def FSFM3C_image_detection(image):
|
|
336 |
|
337 |
# WebUI
|
338 |
with gr.Blocks() as demo:
|
339 |
-
gr.HTML(
|
|
|
340 |
gr.Markdown("### -Powered by the fine-tuned model that is pre-trained from [FSFM-3C](https://fsfm-3c.github.io/)")
|
341 |
|
342 |
gr.Markdown("### Release:")
|
@@ -346,25 +351,26 @@ with gr.Blocks() as demo:
|
|
346 |
"<b>Notes:</b> Performance is limited because no any optimization of data, models, hyperparameters, etc. is done for downstream tasks. <br>"
|
347 |
"- </b>(TODO):</b> Update practical models, and optimized interfaces, and provide more functions such as visualizations, a unified detector, and multi-modal diagnosis.")
|
348 |
|
349 |
-
gr.Markdown(
|
350 |
-
|
351 |
-
|
|
|
352 |
|
353 |
with gr.Column():
|
354 |
ckpt_select_dropdown = gr.Dropdown(
|
355 |
-
label
|
356 |
-
choices
|
357 |
-
multiselect
|
358 |
-
value
|
359 |
-
interactive
|
360 |
-
|
361 |
with gr.Row(elem_classes="center-align"):
|
362 |
with gr.Column(scale=5):
|
363 |
gr.Markdown(
|
364 |
"## Image Detection"
|
365 |
)
|
366 |
image = gr.Image(label="Upload/Capture/Paste your image", type="pil")
|
367 |
-
image_submit_btn = gr.Button("Submit")
|
368 |
output_results_image = gr.Textbox(label="Detection Result")
|
369 |
with gr.Column(scale=5):
|
370 |
gr.Markdown(
|
@@ -390,7 +396,6 @@ with gr.Blocks() as demo:
|
|
390 |
outputs=[ckpt_select_dropdown],
|
391 |
)
|
392 |
|
393 |
-
|
394 |
if __name__ == "__main__":
|
395 |
gr.close_all()
|
396 |
demo.queue()
|
|
|
7 |
# pip uninstall nvidia_cublas_cu11
|
8 |
|
9 |
import sys
|
10 |
+
|
11 |
sys.path.append('..')
|
12 |
import os
|
13 |
+
|
14 |
os.system(f'pip install dlib')
|
15 |
import torch
|
16 |
import numpy as np
|
|
|
26 |
import dlib
|
27 |
from huggingface_hub import hf_hub_download
|
28 |
|
|
|
29 |
P = os.path.abspath(__file__)
|
30 |
FRAME_SAVE_PATH = os.path.join(P[:-6], 'frame')
|
31 |
CKPT_SAVE_PATH = os.path.join(P[:-6], 'checkpoints')
|
32 |
CKPT_LIST = ['DfD-Checkpoint_Fine-tuned_on_FF++',
|
33 |
'FAS-Checkpoint_Fine-tuned_on_MCIO']
|
34 |
CKPT_NAME = {'DfD-Checkpoint_Fine-tuned_on_FF++': 'finetuned_models/FF++_c23_32frames/checkpoint-min_val_loss.pth',
|
35 |
+
'FAS-Checkpoint_Fine-tuned_on_MCIO': 'finetuned_models/MCIO_protocol/Both_MCIO/checkpoint-min_val_loss.pth'}
|
36 |
os.makedirs(FRAME_SAVE_PATH, exist_ok=True)
|
37 |
os.makedirs(CKPT_SAVE_PATH, exist_ok=True)
|
38 |
|
|
|
171 |
global_pool=args.global_pool,
|
172 |
)
|
173 |
|
174 |
+
|
175 |
def load_model(ckpt):
|
176 |
+
if ckpt == 'choose from here' or 'continuously updating...':
|
177 |
return gr.update()
|
178 |
args.resume = os.path.join(CKPT_SAVE_PATH, ckpt)
|
179 |
if os.path.isfile(args.resume) == False:
|
180 |
hf_hub_download(local_dir=CKPT_SAVE_PATH,
|
181 |
+
repo_id='Wolowolo/fsfm-3c/' + CKPT_NAME[ckpt],
|
182 |
filename=ckpt)
|
183 |
checkpoint = torch.load(args.resume, map_location='cpu')
|
184 |
model.load_state_dict(checkpoint['model'])
|
|
|
232 |
return Image.fromarray(cropped_face)
|
233 |
else:
|
234 |
return None
|
235 |
+
|
236 |
+
|
237 |
def get_frame_index_uniform_sample(total_frame_num, extract_frame_num):
|
238 |
interval = np.linspace(0, total_frame_num - 1, num=extract_frame_num, dtype=int)
|
239 |
return interval.tolist()
|
240 |
|
241 |
|
242 |
import cv2
|
243 |
+
|
244 |
+
|
245 |
def extract_face_from_fixed_num_frames(src_video, dst_path, num_frames=None, device='cpu'):
|
246 |
"""
|
247 |
1) extract specific num of frames from videos in [1st(index 0) frame, last frame] with uniform sample interval
|
|
|
259 |
for frame_index in frame_indices:
|
260 |
video_capture.set(cv2.CAP_PROP_POS_FRAMES, frame_index)
|
261 |
ret, frame = video_capture.read()
|
262 |
+
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
263 |
img = extract_face(image)
|
264 |
if img == None:
|
265 |
continue
|
|
|
267 |
if not ret:
|
268 |
continue
|
269 |
save_img_name = f"frame_{frame_index}.png"
|
270 |
+
|
271 |
img.save(os.path.join(dst_path, '0', save_img_name))
|
272 |
# cv2.imwrite(os.path.join(dst_path, '0', save_img_name), frame)
|
273 |
+
|
274 |
video_capture.release()
|
275 |
# cv2.destroyAllWindows()
|
276 |
|
277 |
|
278 |
def FSFM3C_video_detection(video):
|
279 |
model.to(device)
|
280 |
+
|
281 |
# extract frames
|
282 |
num_frames = 32
|
283 |
+
|
284 |
files = os.listdir(FRAME_SAVE_PATH)
|
285 |
num_files = len(files)
|
286 |
frame_path = os.path.join(FRAME_SAVE_PATH, str(num_files))
|
287 |
os.makedirs(frame_path, exist_ok=True)
|
288 |
os.makedirs(os.path.join(frame_path, '0'), exist_ok=True)
|
289 |
extract_face_from_fixed_num_frames(video, frame_path, num_frames=num_frames, device=device)
|
290 |
+
|
291 |
args.data_path = frame_path
|
292 |
args.batch_size = 32
|
293 |
dataset_val = build_dataset(is_train=False, args=args)
|
|
|
299 |
pin_memory=args.pin_mem,
|
300 |
drop_last=False
|
301 |
)
|
302 |
+
|
303 |
frame_preds_list, video_y_pred_list = test_all(data_loader_val, model, device)
|
304 |
|
305 |
return video_y_pred_list
|
|
|
307 |
|
308 |
def FSFM3C_image_detection(image):
|
309 |
model.to(device)
|
310 |
+
|
311 |
files = os.listdir(FRAME_SAVE_PATH)
|
312 |
num_files = len(files)
|
313 |
+
frame_path = os.path.join(FRAME_SAVE_PATH, str(num_files))
|
314 |
os.makedirs(frame_path, exist_ok=True)
|
315 |
os.makedirs(os.path.join(frame_path, '0'), exist_ok=True)
|
316 |
+
|
317 |
save_img_name = f"frame_0.png"
|
318 |
img = extract_face(image)
|
319 |
if img is None:
|
320 |
return ['Invalid Input']
|
321 |
img = img.resize((224, 224), Image.BICUBIC)
|
322 |
img.save(os.path.join(frame_path, '0', save_img_name))
|
323 |
+
|
324 |
args.data_path = frame_path
|
325 |
args.batch_size = 1
|
326 |
dataset_val = build_dataset(is_train=False, args=args)
|
|
|
332 |
pin_memory=args.pin_mem,
|
333 |
drop_last=False
|
334 |
)
|
335 |
+
|
336 |
frame_preds_list, video_y_pred_list = test_all(data_loader_val, model, device)
|
337 |
|
338 |
return video_y_pred_list
|
|
|
340 |
|
341 |
# WebUI
|
342 |
with gr.Blocks() as demo:
|
343 |
+
gr.HTML(
|
344 |
+
"<h1 style='text-align: center;'>🦱 Real Facial Image&Video Detection <br> Against Face Forgery and Spoofing (Deepfake/Diffusion/Presentation-attacks)</h1>")
|
345 |
gr.Markdown("### -Powered by the fine-tuned model that is pre-trained from [FSFM-3C](https://fsfm-3c.github.io/)")
|
346 |
|
347 |
gr.Markdown("### Release:")
|
|
|
351 |
"<b>Notes:</b> Performance is limited because no any optimization of data, models, hyperparameters, etc. is done for downstream tasks. <br>"
|
352 |
"- </b>(TODO):</b> Update practical models, and optimized interfaces, and provide more functions such as visualizations, a unified detector, and multi-modal diagnosis.")
|
353 |
|
354 |
+
gr.Markdown(
|
355 |
+
"> Please provide an <b>image</b> or a <b>video (<100s </b>, default to uniform sampling 32 frames)</b> and </b>select the model</b> for detection. <br>"
|
356 |
+
"- <b>DfD-Checkpoint_Fine-tuned_on_FF++</b> for deepfake detection, FSFM VIT-B fine-tuned on the FF++_c23 dataset (train&val sets of 4 manipulations, 32 frames per video) <br>"
|
357 |
+
"- <b>FAS-Checkpoint_Fine-tuned_on_MCIO</b> for face anti-spoofing, FSFM VIT-B fine-tuned on the MCIO datasets (2 frames per video) ")
|
358 |
|
359 |
with gr.Column():
|
360 |
ckpt_select_dropdown = gr.Dropdown(
|
361 |
+
label="Select the Model Checkpoint for Detection (🖱️ below)",
|
362 |
+
choices=['choose from here'] + CKPT_LIST + ['continuously updating...'],
|
363 |
+
multiselect=False,
|
364 |
+
value='choose from here',
|
365 |
+
interactive=True,
|
366 |
+
)
|
367 |
with gr.Row(elem_classes="center-align"):
|
368 |
with gr.Column(scale=5):
|
369 |
gr.Markdown(
|
370 |
"## Image Detection"
|
371 |
)
|
372 |
image = gr.Image(label="Upload/Capture/Paste your image", type="pil")
|
373 |
+
image_submit_btn = gr.Button("Submit")
|
374 |
output_results_image = gr.Textbox(label="Detection Result")
|
375 |
with gr.Column(scale=5):
|
376 |
gr.Markdown(
|
|
|
396 |
outputs=[ckpt_select_dropdown],
|
397 |
)
|
398 |
|
|
|
399 |
if __name__ == "__main__":
|
400 |
gr.close_all()
|
401 |
demo.queue()
|