|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import sys |
|
from typing import Iterable, Optional |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from timm.data import Mixup |
|
from timm.utils import accuracy |
|
|
|
import util.misc as misc |
|
import util.lr_sched as lr_sched |
|
from util.metrics import * |
|
|
|
import torch.nn.functional as F |
|
|
|
|
|
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, |
|
data_loader: Iterable, optimizer: torch.optim.Optimizer, |
|
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0, |
|
mixup_fn: Optional[Mixup] = None, log_writer=None, |
|
args=None): |
|
model.train(True) |
|
metric_logger = misc.MetricLogger(delimiter=" ") |
|
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}')) |
|
header = 'Epoch: [{}]'.format(epoch) |
|
print_freq = 20 |
|
|
|
accum_iter = args.accum_iter |
|
|
|
optimizer.zero_grad() |
|
|
|
if log_writer is not None: |
|
print('log_dir: {}'.format(log_writer.log_dir)) |
|
|
|
for data_iter_step, (samples, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)): |
|
|
|
|
|
if data_iter_step % accum_iter == 0: |
|
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args) |
|
|
|
samples = samples.to(device, non_blocking=True) |
|
targets = targets.to(device, non_blocking=True) |
|
|
|
if mixup_fn is not None: |
|
samples, targets = mixup_fn(samples, targets) |
|
|
|
with torch.cuda.amp.autocast(): |
|
|
|
outputs = model(samples).to(device, non_blocking=True) |
|
loss = criterion(outputs, targets) |
|
|
|
loss_value = loss.item() |
|
|
|
if not math.isfinite(loss_value): |
|
print("Loss is {}, stopping training".format(loss_value)) |
|
sys.exit(1) |
|
|
|
loss /= accum_iter |
|
loss_scaler(loss, optimizer, clip_grad=max_norm, |
|
parameters=model.parameters(), create_graph=False, |
|
update_grad=(data_iter_step + 1) % accum_iter == 0) |
|
if (data_iter_step + 1) % accum_iter == 0: |
|
optimizer.zero_grad() |
|
|
|
torch.cuda.synchronize() |
|
|
|
metric_logger.update(loss=loss_value) |
|
min_lr = 10. |
|
max_lr = 0. |
|
for group in optimizer.param_groups: |
|
min_lr = min(min_lr, group["lr"]) |
|
max_lr = max(max_lr, group["lr"]) |
|
|
|
metric_logger.update(lr=max_lr) |
|
|
|
loss_value_reduce = misc.all_reduce_mean(loss_value) |
|
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0: |
|
""" We use epoch_1000x as the x-axis in tensorboard. |
|
This calibrates different curves when batch size changes. |
|
""" |
|
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000) |
|
log_writer.add_scalar('loss', loss_value_reduce, epoch_1000x) |
|
log_writer.add_scalar('lr', max_lr, epoch_1000x) |
|
|
|
|
|
metric_logger.synchronize_between_processes() |
|
print("Averaged stats:", metric_logger) |
|
return {k: meter.global_avg for k, meter in metric_logger.meters.items()} |
|
|
|
|
|
@torch.no_grad() |
|
def evaluate(data_loader, model, device): |
|
criterion = torch.nn.CrossEntropyLoss() |
|
|
|
metric_logger = misc.MetricLogger(delimiter=" ") |
|
header = 'Test:' |
|
|
|
|
|
model.eval() |
|
|
|
for batch in metric_logger.log_every(data_loader, 10, header): |
|
images = batch[0] |
|
target = batch[-1] |
|
images = images.to(device, non_blocking=True) |
|
target = target.to(device, non_blocking=True) |
|
|
|
|
|
with torch.cuda.amp.autocast(): |
|
|
|
output = model(images).to(device, non_blocking=True) |
|
loss = criterion(output, target) |
|
|
|
|
|
acc = float(accuracy(output, target, topk=(1,))[0]) |
|
preds = (F.softmax(output, dim=1)[:, 1].detach().cpu().numpy()) |
|
trues = (target.detach().cpu().numpy()) |
|
auc_score = roc_auc_score(trues, preds) * 100. |
|
|
|
batch_size = images.shape[0] |
|
metric_logger.update(loss=loss.item()) |
|
|
|
|
|
metric_logger.meters['acc'].update(acc, n=batch_size) |
|
metric_logger.meters['auc'].update(auc_score, n=batch_size) |
|
|
|
|
|
metric_logger.synchronize_between_processes() |
|
|
|
|
|
print('* Acc {acc.global_avg:.3f} Auc {auc.global_avg:.3f} loss {losses.global_avg:.3f}' |
|
.format(acc=metric_logger.acc, auc=metric_logger.auc, losses=metric_logger.loss)) |
|
|
|
return {k: meter.global_avg for k, meter in metric_logger.meters.items()} |
|
|
|
|
|
@torch.no_grad() |
|
def test_ori(data_loader, model, device): |
|
criterion = torch.nn.CrossEntropyLoss() |
|
|
|
metric_logger = misc.MetricLogger(delimiter=" ") |
|
header = 'Test:' |
|
|
|
|
|
model.eval() |
|
|
|
labels = np.array([]) |
|
preds = np.array([]) |
|
|
|
for batch in metric_logger.log_every(data_loader, 10, header): |
|
images = batch[0] |
|
target = batch[-1] |
|
images = images.to(device, non_blocking=True) |
|
target = target.to(device, non_blocking=True) |
|
|
|
|
|
with torch.cuda.amp.autocast(): |
|
|
|
output = model(images).to(device, non_blocking=True) |
|
loss = criterion(output, target) |
|
|
|
|
|
acc = float(accuracy(output, target, topk=(1,))[0]) |
|
pred = (F.softmax(output, dim=1)[:, 1].detach().cpu().numpy()) |
|
preds = np.append(preds, pred) |
|
label = (target.detach().cpu().numpy()) |
|
labels = np.append(labels, label) |
|
|
|
batch_size = images.shape[0] |
|
metric_logger.update(loss=loss.item()) |
|
|
|
|
|
metric_logger.meters['acc'].update(acc, n=batch_size) |
|
|
|
|
|
metric_logger.synchronize_between_processes() |
|
|
|
|
|
auc_score = roc_auc_score(labels, preds) * 100. |
|
metric_logger.meters['auc'].update(auc_score) |
|
print('* Acc {acc.global_avg:.3f} Auc {auc.global_avg:.3f} loss {losses.global_avg:.3f}' |
|
.format(acc=metric_logger.acc, auc=metric_logger.auc, losses=metric_logger.loss)) |
|
|
|
return {k: meter.global_avg for k, meter in metric_logger.meters.items()} |
|
|
|
|
|
@torch.no_grad() |
|
def test(data_loader, model, device): |
|
criterion = torch.nn.CrossEntropyLoss() |
|
|
|
metric_logger = misc.MetricLogger(delimiter=" ") |
|
header = 'Test:' |
|
|
|
|
|
model.eval() |
|
|
|
frame_labels = np.array([]) |
|
frame_preds = np.array([]) |
|
frame_y_preds = np.array([]) |
|
|
|
|
|
for batch in data_loader: |
|
images = batch[0] |
|
target = batch[1] |
|
|
|
images = images.to(device, non_blocking=True) |
|
target = target.to(device, non_blocking=True) |
|
|
|
|
|
with torch.cuda.amp.autocast(): |
|
|
|
output = model(images).to(device, non_blocking=True) |
|
loss = criterion(output, target) |
|
|
|
frame_pred = (F.softmax(output, dim=1)[:, 1].detach().cpu().numpy()) |
|
frame_preds = np.append(frame_preds, frame_pred) |
|
|
|
frame_y_pred = np.argmax(output.detach().cpu().numpy(), axis=1) |
|
frame_y_preds = np.append(frame_y_preds, frame_y_pred) |
|
|
|
frame_label = (target.detach().cpu().numpy()) |
|
frame_labels = np.append(frame_labels, frame_label) |
|
|
|
metric_logger.update(loss=loss.item()) |
|
|
|
|
|
metric_logger.synchronize_between_processes() |
|
metric_logger.meters['frame_acc'].update(frame_level_acc(frame_labels, frame_y_preds)) |
|
metric_logger.meters['frame_balanced_acc'].update(frame_level_balanced_acc(frame_labels, frame_y_preds)) |
|
metric_logger.meters['frame_auc'].update(frame_level_auc(frame_labels, frame_preds)) |
|
metric_logger.meters['frame_eer'].update(frame_level_eer(frame_labels, frame_preds)) |
|
|
|
print('*[------FRAME-LEVEL------] \n' |
|
'Acc {frame_acc.global_avg:.3f} Balanced_Acc {frame_balanced_acc.global_avg:.3f} ' |
|
'Auc {frame_auc.global_avg:.3f} EER {frame_eer.global_avg:.3f} loss {losses.global_avg:.3f}' |
|
.format(frame_acc=metric_logger.frame_acc, frame_balanced_acc=metric_logger.frame_balanced_acc, |
|
frame_auc=metric_logger.frame_auc, frame_eer=metric_logger.frame_eer, losses=metric_logger.loss)) |
|
|
|
return {k: meter.global_avg for k, meter in metric_logger.meters.items()} |
|
|
|
|
|
@torch.no_grad() |
|
def test_all(data_loader, model, device): |
|
criterion = torch.nn.CrossEntropyLoss() |
|
|
|
metric_logger = misc.MetricLogger(delimiter=" ") |
|
header = 'Test:' |
|
|
|
|
|
model.eval() |
|
|
|
frame_labels = np.array([]) |
|
frame_preds = np.array([]) |
|
frame_y_preds = np.array([]) |
|
video_names_list = list() |
|
|
|
|
|
for batch in data_loader: |
|
images = batch[0] |
|
target = batch[1] |
|
video_name = batch[-1] |
|
|
|
images = images.to(device, non_blocking=True) |
|
target = target.to(device, non_blocking=True) |
|
|
|
|
|
|
|
|
|
output = model(images).to(device, non_blocking=True) |
|
loss = criterion(output, target) |
|
|
|
frame_pred = (F.softmax(output, dim=1)[:, 1].detach().cpu().numpy()) |
|
frame_preds = np.append(frame_preds, frame_pred) |
|
|
|
frame_y_pred = np.argmax(output.detach().cpu().numpy(), axis=1) |
|
frame_y_preds = np.append(frame_y_preds, frame_y_pred) |
|
|
|
frame_label = (target.detach().cpu().numpy()) |
|
frame_labels = np.append(frame_labels, frame_label) |
|
|
|
video_names_list.extend(list(video_name)) |
|
|
|
metric_logger.update(loss=loss.item()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
frame_labels_list = frame_labels.tolist() |
|
frame_preds_list = frame_preds.tolist() |
|
|
|
video_label_list, video_pred_list, video_y_pred_list = get_video_level_label_pred(frame_labels_list, video_names_list, frame_preds_list) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return frame_preds_list, video_pred_list |
|
|