Spaces:
Runtime error
Runtime error
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from langchain_openai import OpenAIEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from langchain_openai import ChatOpenAI | |
from langchain.retrievers import ContextualCompressionRetriever | |
from langchain.retrievers.document_compressors import LLMChainExtractor | |
from langchain.tools.retriever import create_retriever_tool | |
from langchain import hub | |
from langchain.agents import AgentExecutor, create_openai_tools_agent | |
import os | |
import gradio as gr | |
# The Agent retriever is based on: https://python.langchain.com/docs/use_cases/question_answering/conversational_retrieval_agents?ref=blog.langchain.dev | |
# The chat history is based on: https://python.langchain.com/docs/use_cases/question_answering/chat_history | |
# Inspired by https://github.com/Niez-Gharbi/PDF-RAG-with-Llama2-and-Gradio/tree/master | |
# Inspired by https://github.com/mirabdullahyaser/Retrieval-Augmented-Generation-Engine-with-LangChain-and-Streamlit/tree/master | |
class PDFChatBot: | |
# Initialize the class with the api_key and the model_name | |
def __init__(self, api_key): | |
self.processed = False | |
self.final_agent = None | |
self.chat_history = [] | |
self.api_key = api_key | |
self.llm = ChatOpenAI(openai_api_key=self.api_key, temperature=0, model_name="gpt-3.5-turbo-0125") | |
# add text to Gradio text block (not needed without Gradio) | |
def add_text(self, history, text): | |
if not text: | |
raise gr.Error("Please enter text.") | |
history.append((text, '')) | |
return history | |
# Load a pdf document with langchain textloader | |
def load_document(self, file_name): | |
loader = PyPDFLoader(file_name) | |
raw_document = loader.load() | |
return raw_document | |
# Split the document | |
def split_documents(self, raw_document): | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, | |
chunk_overlap=100, | |
length_function=len, | |
is_separator_regex=False, | |
separators=["\n\n", "\n", " ", ""]) | |
chunks = text_splitter.split_documents(raw_document) | |
return chunks | |
# Embed the document with OpenAI Embeddings & store it to vectorstore | |
def create_retriever(self, chunks): | |
embedding_func = OpenAIEmbeddings(openai_api_key=self.api_key) | |
# Create a new vectorstore from the chunks | |
vectorstore = FAISS.from_documents(chunks, embedding_func) | |
# Create a retriever | |
basic_retriever = vectorstore.as_retriever() | |
compressor = LLMChainExtractor.from_llm(self.llm) | |
compression_retriever = ContextualCompressionRetriever(base_compressor=compressor, | |
base_retriever=basic_retriever) | |
return basic_retriever # or compression_retriever | |
# Create an agent | |
def create_agent(self, retriever): | |
tool = create_retriever_tool(retriever, | |
f"search_document", | |
f"Searches and returns excerpts from the provided document.") | |
tools = [tool] | |
prompt = hub.pull("hwchase17/openai-tools-agent") | |
agent = create_openai_tools_agent(self.llm, tools, prompt) | |
self.final_agent = AgentExecutor(agent=agent, tools=tools) | |
# Process files | |
def process_file(self, file_name): | |
documents = self.load_document(file_name) | |
texts = self.split_documents(documents) | |
db = self.create_retriever(texts) | |
self.create_agent(db) | |
print("Files successfully processed") | |
# Generate a response and write to memory | |
def generate_response(self, history, query, path): | |
if not self.processed: | |
self.process_file(path) | |
self.processed = True | |
result = self.final_agent.invoke({'input': query, 'chat_history': self.chat_history})['output'] | |
self.chat_history.extend((query, result)) | |
for char in result: # history argument and the subsequent code is only for the purpose of Gradio | |
history[-1][1] += char | |
return history, " " | |