Wedyan2023's picture
Update app94.py
522cce0 verified
raw
history blame
15.5 kB
import streamlit as st
import pandas as pd
import os
from langchain.prompts import PromptTemplate
from datetime import datetime
import random
from pathlib import Path
from openai import OpenAI
from dotenv import load_dotenv
# Initialize the client
# Load environment variables
load_dotenv()
client = OpenAI(
base_url="/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fv1%26quot%3B%3C%2Fspan%3E%2C%3C!-- HTML_TAG_END -->
api_key=os.environ.get('TEXT_TOKEN') # Add your Huggingface token here
)
# Custom CSS for better appearance
st.markdown("""
<style>
.stButton > button {
width: 100%;
margin-bottom: 10px;
background-color: #4CAF50;
color: white;
border: none;
padding: 10px;
border-radius: 5px;
}
.task-button {
background-color: #2196F3 !important;
}
.stSelectbox {
margin-bottom: 20px;
}
.output-container {
padding: 20px;
border-radius: 5px;
border: 1px solid #ddd;
margin: 10px 0;
}
.status-container {
padding: 10px;
border-radius: 5px;
margin: 10px 0;
}
.sidebar-info {
padding: 10px;
background-color: #f0f2f6;
border-radius: 5px;
margin: 10px 0;
}
</style>
""", unsafe_allow_html=True)
# Create data directories if they don't exist
if not os.path.exists('data'):
os.makedirs('data')
def read_csv_with_encoding(file):
encodings = ['utf-8', 'latin1', 'iso-8859-1', 'cp1252']
for encoding in encodings:
try:
return pd.read_csv(file, encoding=encoding)
except UnicodeDecodeError:
continue
raise UnicodeDecodeError("Failed to read file with any supported encoding")
def save_to_csv(data, filename):
df = pd.DataFrame(data)
df.to_csv(f'data/{filename}', index=False)
return df
def load_from_csv(filename):
try:
return pd.read_csv(f'data/{filename}')
except:
return pd.DataFrame()
# Define reset function
def reset_conversation():
st.session_state.conversation = []
st.session_state.messages = []
# Initialize session state variables
if "messages" not in st.session_state:
st.session_state.messages = []
if "examples_to_classify" not in st.session_state:
st.session_state.examples_to_classify = []
# Main app title
st.title("πŸ€– Text Data Labeling and Generation App")
# Sidebar settings
with st.sidebar:
st.title("βš™οΈ Settings")
selected_model = st.selectbox(
"Select Model",
["meta-llama/Meta-Llama-3-8B-Instruct"],
key='model_select'
)
temperature = st.slider(
"Temperature",
0.0, 1.0, 0.7,
help="Controls randomness in generation"
)
st.button("πŸ”„ Reset Conversation", on_click=reset_conversation)
with st.container():
st.markdown("""
<div class="sidebar-info">
<h4>Current Model: {}</h4>
<p><em>Note: Generated content may be inaccurate or false.</em></p>
</div>
""".format(selected_model), unsafe_allow_html=True)
# Main content
col1, col2 = st.columns(2)
with col1:
if st.button("πŸ“ Data Generation", key="gen_button", help="Generate new data"):
st.session_state.task_choice = "Data Generation"
with col2:
if st.button("🏷️ Data Labeling", key="label_button", help="Label existing data"):
st.session_state.task_choice = "Data Labeling"
if "task_choice" in st.session_state:
if st.session_state.task_choice == "Data Generation":
st.header("πŸ“ Data Generation")
classification_type = st.selectbox(
"Classification Type",
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
)
if classification_type == "Sentiment Analysis":
labels = ["Positive", "Negative", "Neutral"]
elif classification_type == "Binary Classification":
col1, col2 = st.columns(2)
with col1:
label_1 = st.text_input("First class", "Positive")
with col2:
label_2 = st.text_input("Second class", "Negative")
labels = [label_1, label_2] if label_1 and label_2 else ["Positive", "Negative"]
else:
num_classes = st.slider("Number of classes", 3, 10, 3)
labels = []
cols = st.columns(3)
for i in range(num_classes):
with cols[i % 3]:
label = st.text_input(f"Class {i+1}", f"Class_{i+1}")
labels.append(label)
domain = st.selectbox("Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"])
if domain == "Custom":
domain = st.text_input("Specify custom domain")
col1, col2 = st.columns(2)
with col1:
min_words = st.number_input("Min words", 10, 90, 20)
with col2:
max_words = st.number_input("Max words", min_words, 90, 50)
use_few_shot = st.toggle("Use few-shot examples")
few_shot_examples = []
if use_few_shot:
num_examples = st.slider("Number of few-shot examples", 1, 5, 1)
for i in range(num_examples):
with st.expander(f"Example {i+1}"):
content = st.text_area(f"Content", key=f"few_shot_content_{i}")
label = st.selectbox(f"Label", labels, key=f"few_shot_label_{i}")
if content and label:
few_shot_examples.append({"content": content, "label": label})
num_to_generate = st.number_input("Number of examples", 1, 100, 10)
user_prompt = st.text_area("Additional instructions (optional)")
prompt_template = PromptTemplate(
input_variables=["classification_type", "domain", "num_examples", "min_words", "max_words", "labels", "user_prompt"],
template=(
"You are a professional {classification_type} expert tasked with generating examples for {domain}.\n"
"Use the following parameters:\n"
"- Generate exactly {num_examples} examples\n"
"- Each example MUST be between {min_words} and {max_words} words long\n"
"- Use these labels: {labels}\n"
"- Generate the examples in this format: 'Example text. Label: [label]'\n"
"- Do not include word counts or any additional information\n"
"Additional instructions: {user_prompt}\n\n"
"Generate numbered examples:"
)
)
if st.button("🎯 Generate Examples"):
with st.spinner("Generating examples..."):
system_prompt = prompt_template.format(
classification_type=classification_type,
domain=domain,
num_examples=num_to_generate,
min_words=min_words,
max_words=max_words,
labels=", ".join(labels),
user_prompt=user_prompt
)
try:
stream = client.chat.completions.create(
model=selected_model,
messages=[{"role": "system", "content": system_prompt}],
temperature=temperature,
stream=True,
max_tokens=4000,
)
response = st.write_stream(stream)
st.session_state.messages.append({"role": "assistant", "content": response})
# Add follow-up interaction options
st.markdown("---")
follow_up = st.radio(
"What would you like to do next?",
["Generate more examples", "Modify parameters and generate again", "New Task"],
key="generation_follow_up"
)
if st.button("Continue"):
if follow_up == "Generate more examples":
system_prompt = prompt_template.format(
classification_type=classification_type,
domain=domain,
num_examples=num_to_generate,
min_words=min_words,
max_words=max_words,
labels=", ".join(labels),
user_prompt=user_prompt
)
stream = client.chat.completions.create(
model=selected_model,
messages=[{"role": "system", "content": system_prompt}],
temperature=temperature,
stream=True,
max_tokens=4000,
)
response = st.write_stream(stream)
st.session_state.messages.append({"role": "assistant", "content": response})
elif follow_up == "Switch to labeling":
st.session_state.task_choice = "Data Labeling"
st.experimental_rerun()
except Exception as e:
st.error("An error occurred during generation.")
st.error(f"Details: {e}")
elif st.session_state.task_choice == "Data Labeling":
st.header("🏷️ Data Labeling")
classification_type = st.selectbox(
"Classification Type",
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"],
key="label_class_type"
)
if classification_type == "Sentiment Analysis":
labels = ["Positive", "Negative", "Neutral"]
elif classification_type == "Binary Classification":
col1, col2 = st.columns(2)
with col1:
label_1 = st.text_input("First class", "Positive", key="label_first")
with col2:
label_2 = st.text_input("Second class", "Negative", key="label_second")
labels = [label_1, label_2] if label_1 and label_2 else ["Positive", "Negative"]
else:
num_classes = st.slider("Number of classes", 3, 10, 3, key="label_num_classes")
labels = []
cols = st.columns(3)
for i in range(num_classes):
with cols[i % 3]:
label = st.text_input(f"Class {i+1}", f"Class_{i+1}", key=f"label_class_{i}")
labels.append(label)
use_few_shot = st.toggle("Use few-shot examples for labeling")
few_shot_examples = []
if use_few_shot:
num_few_shot = st.slider("Number of few-shot examples", 1, 5, 1)
for i in range(num_few_shot):
with st.expander(f"Few-shot Example {i+1}"):
content = st.text_area(f"Content", key=f"label_few_shot_content_{i}")
label = st.selectbox(f"Label", labels, key=f"label_few_shot_label_{i}")
if content and label:
few_shot_examples.append(f"{content}\nLabel: {label}")
num_examples = st.number_input("Number of examples to classify", 1, 100, 1)
examples_to_classify = []
if num_examples <= 20:
for i in range(num_examples):
example = st.text_area(f"Example {i+1}", key=f"example_{i}")
if example:
examples_to_classify.append(example)
else:
examples_text = st.text_area(
"Enter examples (one per line)",
height=300,
help="Enter each example on a new line"
)
if examples_text:
examples_to_classify = [ex.strip() for ex in examples_text.split('\n') if ex.strip()]
if len(examples_to_classify) > num_examples:
examples_to_classify = examples_to_classify[:num_examples]
user_prompt = st.text_area("Additional instructions (optional)", key="label_instructions")
few_shot_text = "\n\n".join(few_shot_examples) if few_shot_examples else ""
examples_text = "\n".join([f"{i+1}. {ex}" for i, ex in enumerate(examples_to_classify)])
label_prompt_template = PromptTemplate(
input_variables=["classification_type", "labels", "few_shot_examples", "examples", "user_prompt"],
template=(
"You are a professional {classification_type} expert. Classify the following examples using these labels: {labels}.\n"
"Instructions:\n"
"- Return the numbered example followed by its classification in the format: 'Example text. Label: [label]'\n"
"- Do not provide any additional information or explanations\n"
"{user_prompt}\n\n"
"Few-shot examples:\n{few_shot_examples}\n\n"
"Examples to classify:\n{examples}\n\n"
"Output:\n"
)
)
if st.button("🏷️ Label Data"):
if examples_to_classify:
with st.spinner("Labeling data..."):
system_prompt = label_prompt_template.format(
classification_type=classification_type,
labels=", ".join(labels),
few_shot_examples=few_shot_text,
examples=examples_text,
user_prompt=user_prompt
)
try:
stream = client.chat.completions.create(
model=selected_model,
messages=[{"role": "system", "content": system_prompt}],
temperature=temperature,
stream=True,
max_tokens=3000,
)
response = st.write_stream(stream)
st.session_state.messages.append({"role": "assistant", "content": response})
# Add follow-up interaction options
st.markdown("---")
follow_up = st.radio(
"What would you like to do next?",
["Label more data", "Modify parameters and label again", "New Tast"],
key="labeling_follow_up"
)
if st.button("Continue"):
if follow_up == "Label more data":
st.session_state.examples_to_classify = []
st.experimental_rerun()
elif follow_up == "Switch to generation":
st.session_state.task_choice = "Data Generation"
st.experimental_rerun()
except Exception as e:
st.error("An error occurred during labeling.")
st.error(f"Details: {e}")
else:
st.warning("Please enter at least one example to classify.")