File size: 15,504 Bytes
a6f8ee6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1a174f
a6f8ee6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import streamlit as st
import pandas as pd
import os
from langchain.prompts import PromptTemplate
from datetime import datetime
import random
from pathlib import Path
from openai import OpenAI
from dotenv import load_dotenv



# Initialize the client
# Load environment variables
load_dotenv()
client = OpenAI(
    base_url="/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fv1%26quot%3B%3C%2Fspan%3E%2C
    api_key=os.environ.get('TEXT_TOKEN')  # Add your Huggingface token here
)


# Custom CSS for better appearance
st.markdown("""
<style>
    .stButton > button {
        width: 100%;
        margin-bottom: 10px;
        background-color: #4CAF50;
        color: white;
        border: none;
        padding: 10px;
        border-radius: 5px;
    }
    .task-button {
        background-color: #2196F3 !important;
    }
    .stSelectbox {
        margin-bottom: 20px;
    }
    .output-container {
        padding: 20px;
        border-radius: 5px;
        border: 1px solid #ddd;
        margin: 10px 0;
    }
    .status-container {
        padding: 10px;
        border-radius: 5px;
        margin: 10px 0;
    }
    .sidebar-info {
        padding: 10px;
        background-color: #f0f2f6;
        border-radius: 5px;
        margin: 10px 0;
    }
</style>
""", unsafe_allow_html=True)

# Create data directories if they don't exist
if not os.path.exists('data'):
    os.makedirs('data')

def read_csv_with_encoding(file):
    encodings = ['utf-8', 'latin1', 'iso-8859-1', 'cp1252']
    for encoding in encodings:
        try:
            return pd.read_csv(file, encoding=encoding)
        except UnicodeDecodeError:
            continue
    raise UnicodeDecodeError("Failed to read file with any supported encoding")

def save_to_csv(data, filename):
    df = pd.DataFrame(data)
    df.to_csv(f'data/{filename}', index=False)
    return df

def load_from_csv(filename):
    try:
        return pd.read_csv(f'data/{filename}')
    except:
        return pd.DataFrame()

# Define reset function
def reset_conversation():
    st.session_state.conversation = []
    st.session_state.messages = []

# Initialize session state variables
if "messages" not in st.session_state:
    st.session_state.messages = []
if "examples_to_classify" not in st.session_state:
    st.session_state.examples_to_classify = []

# Main app title
st.title("πŸ€– Text Data Labeling and Generation App")

# Sidebar settings
with st.sidebar:
    st.title("βš™οΈ Settings")
    
    selected_model = st.selectbox(
        "Select Model",
        ["meta-llama/Meta-Llama-3-8B-Instruct"],
        key='model_select'
    )
    
    temperature = st.slider(
        "Temperature",
        0.0, 1.0, 0.5,
        help="Controls randomness in generation"
    )
    
    st.button("πŸ”„ Reset Conversation", on_click=reset_conversation)
    
    with st.container():
        st.markdown("""
        <div class="sidebar-info">
            <h4>Current Model: {}</h4>
            <p><em>Note: Generated content may be inaccurate or false.</em></p>
        </div>
        """.format(selected_model), unsafe_allow_html=True)

# Main content
col1, col2 = st.columns(2)

with col1:
    if st.button("πŸ“ Data Generation", key="gen_button", help="Generate new data"):
        st.session_state.task_choice = "Data Generation"

with col2:
    if st.button("🏷️ Data Labeling", key="label_button", help="Label existing data"):
        st.session_state.task_choice = "Data Labeling"

if "task_choice" in st.session_state:
    if st.session_state.task_choice == "Data Generation":
        st.header("πŸ“ Data Generation")
        
        classification_type = st.selectbox(
            "Classification Type",
            ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
        )

        if classification_type == "Sentiment Analysis":
            labels = ["Positive", "Negative", "Neutral"]
        elif classification_type == "Binary Classification":
            col1, col2 = st.columns(2)
            with col1:
                label_1 = st.text_input("First class", "Positive")
            with col2:
                label_2 = st.text_input("Second class", "Negative")
            labels = [label_1, label_2] if label_1 and label_2 else ["Positive", "Negative"]
        else:
            num_classes = st.slider("Number of classes", 3, 10, 3)
            labels = []
            cols = st.columns(3)
            for i in range(num_classes):
                with cols[i % 3]:
                    label = st.text_input(f"Class {i+1}", f"Class_{i+1}")
                    labels.append(label)

        domain = st.selectbox("Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"])
        if domain == "Custom":
            domain = st.text_input("Specify custom domain")

        col1, col2 = st.columns(2)
        with col1:
            min_words = st.number_input("Min words", 10, 90, 20)
        with col2:
            max_words = st.number_input("Max words", min_words, 90, 50)

        use_few_shot = st.toggle("Use few-shot examples")
        few_shot_examples = []
        if use_few_shot:
            num_examples = st.slider("Number of few-shot examples", 1, 5, 1)
            for i in range(num_examples):
                with st.expander(f"Example {i+1}"):
                    content = st.text_area(f"Content", key=f"few_shot_content_{i}")
                    label = st.selectbox(f"Label", labels, key=f"few_shot_label_{i}")
                    if content and label:
                        few_shot_examples.append({"content": content, "label": label})

        num_to_generate = st.number_input("Number of examples", 1, 100, 10)
        user_prompt = st.text_area("Additional instructions (optional)")

        prompt_template = PromptTemplate(
            input_variables=["classification_type", "domain", "num_examples", "min_words", "max_words", "labels", "user_prompt"],
            template=(
                "You are a professional {classification_type} expert tasked with generating examples for {domain}.\n"
                "Use the following parameters:\n"
                "- Generate exactly {num_examples} examples\n"
                "- Each example MUST be between {min_words} and {max_words} words long\n"
                "- Use these labels: {labels}\n"
                "- Generate the examples in this format: 'Example text. Label: [label]'\n"
                "- Do not include word counts or any additional information\n"
                "Additional instructions: {user_prompt}\n\n"
                "Generate numbered examples:"
            )
        )

        if st.button("🎯 Generate Examples"):
            with st.spinner("Generating examples..."):
                system_prompt = prompt_template.format(
                    classification_type=classification_type,
                    domain=domain,
                    num_examples=num_to_generate,
                    min_words=min_words,
                    max_words=max_words,
                    labels=", ".join(labels),
                    user_prompt=user_prompt
                )
                try:
                    stream = client.chat.completions.create(
                        model=selected_model,
                        messages=[{"role": "system", "content": system_prompt}],
                        temperature=temperature,
                        stream=True,
                        max_tokens=3000,
                    )
                    response = st.write_stream(stream)
                    st.session_state.messages.append({"role": "assistant", "content": response})
                    
                    # Add follow-up interaction options
                    st.markdown("---")
                    follow_up = st.radio(
                        "What would you like to do next?",
                        ["Generate more examples", "Modify parameters and generate again", "Switch to labeling"],
                        key="generation_follow_up"
                    )
                    
                    if st.button("Continue"):
                        if follow_up == "Generate more examples":
                            system_prompt = prompt_template.format(
                                classification_type=classification_type,
                                domain=domain,
                                num_examples=num_to_generate,
                                min_words=min_words,
                                max_words=max_words,
                                labels=", ".join(labels),
                                user_prompt=user_prompt
                            )
                            stream = client.chat.completions.create(
                                model=selected_model,
                                messages=[{"role": "system", "content": system_prompt}],
                                temperature=temperature,
                                stream=True,
                                max_tokens=3000,
                            )
                            response = st.write_stream(stream)
                            st.session_state.messages.append({"role": "assistant", "content": response})
                        elif follow_up == "Switch to labeling":
                            st.session_state.task_choice = "Data Labeling"
                            st.experimental_rerun()
                            
                except Exception as e:
                    st.error("An error occurred during generation.")
                    st.error(f"Details: {e}")

    elif st.session_state.task_choice == "Data Labeling":
        st.header("🏷️ Data Labeling")
        
        classification_type = st.selectbox(
            "Classification Type",
            ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"],
            key="label_class_type"
        )

        if classification_type == "Sentiment Analysis":
            labels = ["Positive", "Negative", "Neutral"]
        elif classification_type == "Binary Classification":
            col1, col2 = st.columns(2)
            with col1:
                label_1 = st.text_input("First class", "Positive", key="label_first")
            with col2:
                label_2 = st.text_input("Second class", "Negative", key="label_second")
            labels = [label_1, label_2] if label_1 and label_2 else ["Positive", "Negative"]
        else:
            num_classes = st.slider("Number of classes", 3, 10, 3, key="label_num_classes")
            labels = []
            cols = st.columns(3)
            for i in range(num_classes):
                with cols[i % 3]:
                    label = st.text_input(f"Class {i+1}", f"Class_{i+1}", key=f"label_class_{i}")
                    labels.append(label)

        use_few_shot = st.toggle("Use few-shot examples for labeling")
        few_shot_examples = []
        if use_few_shot:
            num_few_shot = st.slider("Number of few-shot examples", 1, 5, 1)
            for i in range(num_few_shot):
                with st.expander(f"Few-shot Example {i+1}"):
                    content = st.text_area(f"Content", key=f"label_few_shot_content_{i}")
                    label = st.selectbox(f"Label", labels, key=f"label_few_shot_label_{i}")
                    if content and label:
                        few_shot_examples.append(f"{content}\nLabel: {label}")

        num_examples = st.number_input("Number of examples to classify", 1, 100, 1)
        
        examples_to_classify = []
        if num_examples <= 20:
            for i in range(num_examples):
                example = st.text_area(f"Example {i+1}", key=f"example_{i}")
                if example:
                    examples_to_classify.append(example)
        else:
            examples_text = st.text_area(
                "Enter examples (one per line)",
                height=300,
                help="Enter each example on a new line"
            )
            if examples_text:
                examples_to_classify = [ex.strip() for ex in examples_text.split('\n') if ex.strip()]
                if len(examples_to_classify) > num_examples:
                    examples_to_classify = examples_to_classify[:num_examples]

        user_prompt = st.text_area("Additional instructions (optional)", key="label_instructions")

        few_shot_text = "\n\n".join(few_shot_examples) if few_shot_examples else ""
        examples_text = "\n".join([f"{i+1}. {ex}" for i, ex in enumerate(examples_to_classify)])
        
        label_prompt_template = PromptTemplate(
            input_variables=["classification_type", "labels", "few_shot_examples", "examples", "user_prompt"],
            template=(
                "You are a professional {classification_type} expert. Classify the following examples using these labels: {labels}.\n"
                "Instructions:\n"
                "- Return the numbered example followed by its classification in the format: 'Example text. Label: [label]'\n"
                "- Do not provide any additional information or explanations\n"
                "{user_prompt}\n\n"
                "Few-shot examples:\n{few_shot_examples}\n\n"
                "Examples to classify:\n{examples}\n\n"
                "Output:\n"
            )
        )

        if st.button("🏷️ Label Data"):
            if examples_to_classify:
                with st.spinner("Labeling data..."):
                    system_prompt = label_prompt_template.format(
                        classification_type=classification_type,
                        labels=", ".join(labels),
                        few_shot_examples=few_shot_text,
                        examples=examples_text,
                        user_prompt=user_prompt
                    )
                    try:
                        stream = client.chat.completions.create(
                            model=selected_model,
                            messages=[{"role": "system", "content": system_prompt}],
                            temperature=temperature,
                            stream=True,
                            max_tokens=3000,
                        )
                        response = st.write_stream(stream)
                        st.session_state.messages.append({"role": "assistant", "content": response})
                        
                        # Add follow-up interaction options
                        st.markdown("---")
                        follow_up = st.radio(
                            "What would you like to do next?",
                            ["Label more data", "Modify parameters and label again", "Switch to generation"],
                            key="labeling_follow_up"
                        )
                        
                        if st.button("Continue"):
                            if follow_up == "Label more data":
                                st.session_state.examples_to_classify = []
                                st.experimental_rerun()
                            elif follow_up == "Switch to generation":
                                st.session_state.task_choice = "Data Generation"
                                st.experimental_rerun()
                                
                    except Exception as e:
                        st.error("An error occurred during labeling.")
                        st.error(f"Details: {e}")
            else:
                st.warning("Please enter at least one example to classify.")