import torch import gradio as gr from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer, AutoConfig # List of summarization models model_names = [ "google/bigbird-pegasus-large-arxiv", "facebook/bart-large-cnn", "google/t5-v1_1-large", "sshleifer/distilbart-cnn-12-6", "allenai/led-base-16384", "google/pegasus-xsum", "togethercomputer/LLaMA-2-7B-32K" ] # Placeholder for the summarizer pipeline, tokenizer, and maximum tokens summarizer = None tokenizer = None max_tokens = None # Function to load the selected model def load_model(model_name): global summarizer, tokenizer, max_tokens try: # Load the summarization pipeline with the selected model summarizer = pipeline("summarization", model=model_name, torch_dtype=torch.float32) tokenizer = AutoTokenizer.from_pretrained(model_name) config = AutoConfig.from_pretrained(model_name) # Set a reasonable default for max_tokens if not available max_tokens = getattr(config, 'max_position_embeddings', 1024) return f"Model {model_name} loaded successfully! Max tokens: {max_tokens}" except Exception as e: return f"Failed to load model {model_name}. Error: {str(e)}" # Function to summarize the input text def summarize_text(input, min_length, max_length): if summarizer is None: return "No model loaded!" try: # Tokenize the input text and check the number of tokens input_tokens = tokenizer.encode(input, return_tensors="pt") num_tokens = input_tokens.shape[1] if num_tokens > max_tokens: return f"Error: Input exceeds the max token limit of {max_tokens}." # Ensure min/max lengths are within bounds min_summary_length = max(10, int(num_tokens * (min_length / 100))) max_summary_length = min(max_tokens, int(num_tokens * (max_length / 100))) # Summarize the input text output = summarizer(input, min_length=min_summary_length, max_length=max_summary_length, truncation=True) return output[0]['summary_text'] except Exception as e: return f"Summarization failed: {str(e)}" # Gradio Interface with gr.Blocks() as demo: with gr.Row(): model_dropdown = gr.Dropdown(choices=model_names, label="Choose a model", value="sshleifer/distilbart-cnn-12-6") load_button = gr.Button("Load Model") load_message = gr.Textbox(label="Load Status", interactive=False) min_length_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Minimum Summary Length (%)", value=10) max_length_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Maximum Summary Length (%)", value=20) input_text = gr.Textbox(label="Input text to summarize", lines=6) summarize_button = gr.Button("Summarize Text") output_text = gr.Textbox(label="Summarized text", lines=4) load_button.click(fn=load_model, inputs=model_dropdown, outputs=load_message) summarize_button.click(fn=summarize_text, inputs=[input_text, min_length_slider, max_length_slider], outputs=output_text) demo.launch()