Vladislawoo commited on
Commit
6f95ca2
·
1 Parent(s): 19ef4fe

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -4
app.py CHANGED
@@ -26,8 +26,8 @@ labels = ["не токсичный", "оскорбляющий", "неприст
26
  def text2toxicity(text, aggregate=True):
27
  """ Calculate toxicity of a text (if aggregate=True) or a vector of toxicity aspects (if aggregate=False)"""
28
  with torch.no_grad():
29
- inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(model.device)
30
- proba = torch.sigmoid(model(**inputs).logits).cpu().numpy()
31
 
32
  if isinstance(text, str):
33
  proba = proba[0]
@@ -35,7 +35,6 @@ def text2toxicity(text, aggregate=True):
35
  if aggregate:
36
  return 1 - proba.T[0] * (1 - proba.T[-1])
37
  else:
38
- # Добавленный блок кода
39
  result = {}
40
  for label, prob in zip(labels, proba):
41
  result[label] = prob
@@ -112,7 +111,7 @@ def page_toxicity_analysis():
112
  elapsed_time = time.time() - start_time
113
 
114
  for label, prob in probs.items():
115
- st.write(f"Вероятность {label}: {prob:.4f}")
116
 
117
 
118
  def main():
 
26
  def text2toxicity(text, aggregate=True):
27
  """ Calculate toxicity of a text (if aggregate=True) or a vector of toxicity aspects (if aggregate=False)"""
28
  with torch.no_grad():
29
+ inputs = toxicity_tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(toxicity_model.device)
30
+ proba = torch.sigmoid(toxicity_model(**inputs).logits).cpu().numpy()
31
 
32
  if isinstance(text, str):
33
  proba = proba[0]
 
35
  if aggregate:
36
  return 1 - proba.T[0] * (1 - proba.T[-1])
37
  else:
 
38
  result = {}
39
  for label, prob in zip(labels, proba):
40
  result[label] = prob
 
111
  elapsed_time = time.time() - start_time
112
 
113
  for label, prob in probs.items():
114
+ st.write(f"Вероятность того что комментарий {label}: {prob:.4f}")
115
 
116
 
117
  def main():