# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # #TODO: license: MIT pending (evaluation suite itself can be completely open, nothing copyleft from the dataset reaches us here) """TODO: Add a description here.""" # TODO: Add BibTeX citation _CITATION = """\ @InProceedings{huggingface:module, title = {A great new module}, authors={huggingface, Inc.}, year={2023} } """ # TODO: Add description of the module here _DESCRIPTION = """\ This EvaluationSuite currently solves {1} tasks to test code intelligence of genereative language models for "creative programming" (fragment shaders). """ # via https://huggingface.co/docs/evaluate/evaluation_suite import evaluate from evaluate import evaluator #used by Suite.run() from evaluate.evaluator.utils import DatasetColumn # used in .prepare_data() from evaluate.evaluation_suite import SubTask from datasets import Dataset from typing import Any, Callable, Dict, List, Optional, Union # used in .prepare_pipeline() import transformers from transformers import Pipeline, pipeline, GenerationConfig, AutoTokenizer #GenerationConfig to specify greedy and avoid error from datasets import load_dataset #used by Suite.run() # write a custom evaluator, inherent from: https://github.com/huggingface/evaluate/blob/v0.4.0/src/evaluate/evaluator/text_generation.py#L31 class ReturnGenerationEvaluator(evaluate.TextGenerationEvaluator): def __init__(self, task="text-generation", default_metric_name="exact_match", predictions_prefix: str = "generated"): super().__init__(task=task, default_metric_name=default_metric_name) self.predictions_prefix = predictions_prefix greedy_cfg = GenerationConfig( do_sample = False, # default to ensure greedy num_beams = 1, # same as above ) PIPELINE_KWARGS = {"return_full_text": False, "generation_config":greedy_cfg} #these kwargs are for the pipeline call, not the pipeline init - but that seems to still work. # for the pipeline init we need to copy the whole function and add two lines. this still prints errors due to the pad_toke_id = eos_token_id change. # from: https://github.com/huggingface/evaluate/blob/v0.4.0/src/evaluate/evaluator/base.py#L375 def prepare_pipeline( self, model_or_pipeline: Union[str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel"], # noqa: F821 tokenizer: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821 feature_extractor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821 device: int = None, ): """ Prepare pipeline. Args: model_or_pipeline (`str` or `Pipeline` or `Callable` or `PreTrainedModel` or `TFPreTrainedModel`, defaults to `None`): If the argument in not specified, we initialize the default pipeline for the task. If the argument is of the type `str` or is a model instance, we use it to initialize a new `Pipeline` with the given model. Otherwise we assume the argument specifies a pre-initialized pipeline. preprocessor (`PreTrainedTokenizerBase` or `FeatureExtractionMixin`, *optional*, defaults to `None`): Argument can be used to overwrite a default preprocessor if `model_or_pipeline` represents a model for which we build a pipeline. If `model_or_pipeline` is `None` or a pre-initialized pipeline, we ignore this argument. Returns: The initialized pipeline, with modifications for the specific task of generating text, even with long inputs. """ if device is None: device = self._infer_device() if ( isinstance(model_or_pipeline, str) or isinstance(model_or_pipeline, transformers.PreTrainedModel) or isinstance(model_or_pipeline, transformers.TFPreTrainedModel) ): if isinstance(model_or_pipeline, str): # load tokenizer manually, since the pipeline does fail to do so at times. needed for bigcode/santacoder for example. tokenizer = AutoTokenizer.from_pretrained(model_or_pipeline, trust_remote_code=True) pipe = pipeline( self.task, model=model_or_pipeline, tokenizer=tokenizer, feature_extractor=feature_extractor, device=device, # my additions here: handle_long_generation= "hole", #our solution? relevant: https://github.com/huggingface/transformers/issues/14033#issuecomment-948385227 # pad_token_id=tokenizer.eos_token_id, #to avoid the warning, however there might be issues as tokenizers will call this differently. do_sample=False, #important to get reproduceable results but we need to make sure the generator is deterministic trust_remote_code=True, # do we need this for some custom models? need to test if it works right here. one example is bigcode/santacoder ) else: if model_or_pipeline is None: pipe = pipeline(self.task, device=device) else: pipe = model_or_pipeline # if tokenizer is not None and feature_extractor is not None: # logger.warning("Ignoring the value of the preprocessor argument (`tokenizer` or `feature_extractor`).") #excluded warning because I didn't import logger if (pipe.task != self.task) and not (self.task == "translation" and pipe.task.startswith("translation")): raise ValueError( f"Incompatible `model_or_pipeline`. Please specify `model_or_pipeline` compatible with the `{self.task}` task." ) # fixinging default for max_lenght pipe.model.config.max_length = self._resolve_context_lenght(pipe=pipe) # update the generation config with information from the pipe self._update_generation_config(pipe) return pipe def _update_generation_config(self, pipe): """ Update the generation config with information from the pipe. Sets eos_token_id and pad_token_id. Args: pipe (:class:`~transformers.Pipeline`): we need to access the tokenizer.vocab returns: None """ semicolon_token_ids = [v for k,v in pipe.tokenizer.vocab.items() if ";" in k] # this requires the tokenizer, which we only have once a pipe is made. # GenerationConfig.update also exists, but it does only replace, not add kwargs. self.greedy_cfg.eos_token_id = semicolon_token_ids # eos_token_id can be a list, so we give them all possible tokens. self.greedy_cfg.pad_token_id = semicolon_token_ids[0] # pad_token_id has to be an int, so we just take the first one. return None # doesn't do anything? def _resolve_context_lenght(self, model_or_pipeline=None, pipe=None): #TODO should really copy the typing hints here. if isinstance(model_or_pipeline, transformers.GPT2Model): # you are comparing a string here -.- return model_or_pipeline.config.n_ctx # how GPT2 models might handle is, seen with if pipe is not None: #should I figure out a way to pass this. return pipe.tokenizer.model_max_length # this is set to something small for pipeline default task, but we would want to put it to the max instead. # tokenizer needs to know the context length for our pipe strategy, but it has to be passed to the tokenizer, not model. # the tokenizer should read from the model config, but that can be wrong, or it has a task overwrite (for "text-generation" for example you get 50) #model_or_pipeline only exists via the .compute call, so we have to take it in # model_or_pipeline.tokenier.config.max_new_tokens = 1024 # we shouldn't return it, but overwrite the tokenizer config, which the pipeline relies on. return 1024 # we shouldn't return it, but overwrite the tokenizer config, which the pipeline relies on. def _estimate_stopping(self, labels, **kwargs): """ estimates max_new_tokens for the pipeline call by counting the characters in the longest string of the references adding 5 (for good measure but probably not needed) Args: labels: A list of dicts by knowing the labels Returns: `int`: the estimated max_new_tokens, should be smaller than context_lenght in all cases """ context_lenght = self._resolve_context_lenght(**kwargs) estimate = min(max([len(ref) for ref in labels]) + 5, context_lenght) #does the min call get done inside the pipeline anyway? is there even a single case where the return statement is this long? return estimate # this one needs to be adjusted def predictions_processor(self, predictions, *args, **kwargs): """ processes the output of the pipeline to be compatible with the metric. generated texts cut off by the first semicolon and whitespaces are stripped (using python str builtins) Args: predictions: A list of lists of dicts Returns: `dict`: All the processed text are flattened and stored under the "predictions" key. """ return {"predictions": [pred[f"{self.predictions_prefix}_text"].split(";")[0].strip() for pred_list in predictions for pred in pred_list]} # straight copy, doesn't seem to give me the def prepare_data(self, data: Dataset, input_column: str, label_column: str, *args, **kwargs): """ Prepare data. Args: data (`Dataset`): Specifies the dataset we will run evaluation on. input_column (`str`, defaults to `"text"`): the name of the column containing the text feature in the dataset specified by `data`. label_column (`str`, defaults to `"label"`): the name of the column containing the labels in the dataset specified by `data`. Returns: `dict`: metric inputs. everything before the first semicolon and whitespaces are stripped (using python str builtins, just like the pred prep) `list`: pipeline inputs. """ self.check_required_columns(data, {"input_column": input_column, "label_column": label_column}) #this will throw and exception with useful error messages # don't put everything in the return statement, so you have the control... references = [ref.split(";")[0].strip() for ref in data[label_column]] self.PIPELINE_KWARGS.update({"max_new_tokens": self._estimate_stopping(references)}) #this is a hack, does it work tho? return {"references": references}, data[input_column] #DatasetColumn(data, input_column) doesn't seem to work. data[input_column] does, but ignores any of the features of the helper class.. # via: https://huggingface.co/docs/evaluate/evaluation_suite # relevant source: https://github.com/huggingface/evaluate/blob/v0.4.0/src/evaluate/evaluation_suite/__init__.py class Suite(evaluate.EvaluationSuite): def __init__(self, name): super().__init__(name) self.preprocessor = lambda x: {"return_statement": x["return_statement"].split(";")[0]} #like this? refactored to RetrunGenerationEvaluator self.suite = [ # more subtasks are only possible once we can pass custom evaluators. -> https://github.com/huggingface/evaluate/pull/367 SubTask( #this one is adjusted already task_type="text-generation", #this call an evaluator, but can you specify your own custom evaluator instead? data="Vipitis/Shadertoys-fine", subset="return_completion", split="test", # use this to select a subset of the data during testing, perhaps remove later? args_for_task={ # "metric": "exact_match", "input_column": "body", "label_column": "return_statement", } ) ] # from: https://github.com/huggingface/evaluate/blob/v0.4.0/src/evaluate/evaluation_suite/__init__.py#LL103C5-L129C27 def run( self, model_or_pipeline: Union[str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel"] = "Vipitis/santacoder-finetuned-Shadertoys-fine", #not so useful default model? snippet: int = "" # noqa: F821 ) -> Dict[str, float]: self.assert_suite_nonempty() results_all = [] for task in self.suite: task_name = task.data if task.data_preprocessor: # task requires extra preprocessing is all done inside the Evaluator ds = load_dataset(task.data, name=task.subset, split=(task.split + f"[:{snippet}]")) task.data = ds.map(task.data_preprocessor) task_evaluator = ReturnGenerationEvaluator() #this is the change we make: specify our custom evaluator from above. args_for_task = task.args_for_task args_for_task["model_or_pipeline"] = model_or_pipeline args_for_task["data"] = task.data args_for_task["subset"] = task.subset args_for_task["split"] = (task.split + f"[:{snippet}]") #make a downselection of the split via keywordarg in the .run() call? results = task_evaluator.compute(**args_for_task) results["model_cp"] = model_or_pipeline #added this to the output, should be useful. But be careful when passed something that is not a string. #TODO: currently the same for all tasks, maybe move to the list? results["task_name"] = task_name + "/" + task.subset if task.subset else task_name results["data_preprocessor"] = str(task.data_preprocessor) if task.data_preprocessor is not None else None results_all.append(results) return results_all