Orient-Anything / utils.py
zhang-ziang
render axis
738bdfa
raw
history blame
9.54 kB
import rembg
import random
import torch
import numpy as np
from PIL import Image
import PIL
from typing import Any
import matplotlib.pyplot as plt
def resize_foreground(
image: Image,
ratio: float,
) -> Image:
image = np.array(image)
assert image.shape[-1] == 4
alpha = np.where(image[..., 3] > 0)
y1, y2, x1, x2 = (
alpha[0].min(),
alpha[0].max(),
alpha[1].min(),
alpha[1].max(),
)
# crop the foreground
fg = image[y1:y2, x1:x2]
# pad to square
size = max(fg.shape[0], fg.shape[1])
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
new_image = np.pad(
fg,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
# compute padding according to the ratio
new_size = int(new_image.shape[0] / ratio)
# pad to size, double side
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
ph1, pw1 = new_size - size - ph0, new_size - size - pw0
new_image = np.pad(
new_image,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
new_image = Image.fromarray(new_image)
return new_image
def remove_background(image: Image,
rembg_session: Any = None,
force: bool = False,
**rembg_kwargs,
) -> Image:
do_remove = True
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
do_remove = False
do_remove = do_remove or force
if do_remove:
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
return image
def random_crop(image, crop_scale=(0.8, 0.95)):
"""
随机裁切图片
image (numpy.ndarray): (H, W, C)。
crop_scale (tuple): (min_scale, max_scale)。
"""
assert isinstance(image, Image.Image), "iput must be PIL.Image.Image"
assert len(crop_scale) == 2 and 0 < crop_scale[0] <= crop_scale[1] <= 1
width, height = image.size
# 计算裁切的高度和宽度
crop_width = random.randint(int(width * crop_scale[0]), int(width * crop_scale[1]))
crop_height = random.randint(int(height * crop_scale[0]), int(height * crop_scale[1]))
# 随机选择裁切的起始点
left = random.randint(0, width - crop_width)
top = random.randint(0, height - crop_height)
# 裁切图片
cropped_image = image.crop((left, top, left + crop_width, top + crop_height))
return cropped_image
def get_crop_images(img, num=3):
cropped_images = []
for i in range(num):
cropped_images.append(random_crop(img))
return cropped_images
def background_preprocess(input_image, do_remove_background):
rembg_session = rembg.new_session() if do_remove_background else None
if do_remove_background:
input_image = remove_background(input_image, rembg_session)
input_image = resize_foreground(input_image, 0.85)
return input_image
def remove_outliers_and_average(tensor, threshold=1.5):
assert tensor.dim() == 1, "dimension of input Tensor must equal to 1"
q1 = torch.quantile(tensor, 0.25)
q3 = torch.quantile(tensor, 0.75)
iqr = q3 - q1
lower_bound = q1 - threshold * iqr
upper_bound = q3 + threshold * iqr
non_outliers = tensor[(tensor >= lower_bound) & (tensor <= upper_bound)]
if len(non_outliers) == 0:
return tensor.mean().item()
return non_outliers.mean().item()
def remove_outliers_and_average_circular(tensor, threshold=1.5):
assert tensor.dim() == 1, "dimension of input Tensor must equal to 1"
# 将角度转换为二维平面上的点
radians = tensor * torch.pi / 180.0
x_coords = torch.cos(radians)
y_coords = torch.sin(radians)
# 计算平均向量
mean_x = torch.mean(x_coords)
mean_y = torch.mean(y_coords)
differences = torch.sqrt((x_coords - mean_x) * (x_coords - mean_x) + (y_coords - mean_y) * (y_coords - mean_y))
# 计算四分位数和 IQR
q1 = torch.quantile(differences, 0.25)
q3 = torch.quantile(differences, 0.75)
iqr = q3 - q1
# 计算上下限
lower_bound = q1 - threshold * iqr
upper_bound = q3 + threshold * iqr
# 筛选非离群点
non_outliers = tensor[(differences >= lower_bound) & (differences <= upper_bound)]
if len(non_outliers) == 0:
mean_angle = torch.atan2(mean_y, mean_x) * 180.0 / torch.pi
mean_angle = (mean_angle + 360) % 360
return mean_angle # 如果没有非离群点,返回 None
# 对非离群点再次计算平均向量
radians = non_outliers * torch.pi / 180.0
x_coords = torch.cos(radians)
y_coords = torch.sin(radians)
mean_x = torch.mean(x_coords)
mean_y = torch.mean(y_coords)
mean_angle = torch.atan2(mean_y, mean_x) * 180.0 / torch.pi
mean_angle = (mean_angle + 360) % 360
return mean_angle
def scale(x):
# print(x)
# if abs(x[0])<0.1 and abs(x[1])<0.1:
# return x*5
# else:
# return x
return x*3
def get_proj2D_XYZ(phi, theta, gamma):
x = np.array([-1*np.sin(phi)*np.cos(gamma) - np.cos(phi)*np.sin(theta)*np.sin(gamma), np.sin(phi)*np.sin(gamma) - np.cos(phi)*np.sin(theta)*np.cos(gamma)])
y = np.array([-1*np.cos(phi)*np.cos(gamma) + np.sin(phi)*np.sin(theta)*np.sin(gamma), np.cos(phi)*np.sin(gamma) + np.sin(phi)*np.sin(theta)*np.cos(gamma)])
z = np.array([np.cos(theta)*np.sin(gamma), np.cos(theta)*np.cos(gamma)])
x = scale(x)
y = scale(y)
z = scale(z)
return x, y, z
# 绘制3D坐标轴
def draw_axis(ax, origin, vector, color, label=None):
ax.quiver(origin[0], origin[1], vector[0], vector[1], angles='xy', scale_units='xy', scale=1, color=color)
if label!=None:
ax.text(origin[0] + vector[0] * 1.1, origin[1] + vector[1] * 1.1, label, color=color, fontsize=12)
def matplotlib_2D_arrow(angles, rm_bkg_img):
fig, ax = plt.subplots(figsize=(8, 8))
# 设置旋转角度
phi = np.radians(angles[0])
theta = np.radians(angles[1])
gamma = np.radians(-1*angles[2])
w, h = rm_bkg_img.size
if h>w:
extent = [-5*w/h, 5*w/h, -5, 5]
else:
extent = [-5, 5, -5*h/w, 5*h/w]
ax.imshow(rm_bkg_img, extent=extent, zorder=0, aspect ='auto') # extent 设置图片的显示范围
origin = np.array([0, 0])
# 旋转后的向量
rot_x, rot_y, rot_z = get_proj2D_XYZ(phi, theta, gamma)
# draw arrow
arrow_attr = [{'point':rot_x, 'color':'r', 'label':'front'},
{'point':rot_y, 'color':'g', 'label':'right'},
{'point':rot_z, 'color':'b', 'label':'top'}]
if phi> 45 and phi<=225:
order = [0,1,2]
elif phi > 225 and phi < 315:
order = [2,0,1]
else:
order = [2,1,0]
for i in range(3):
draw_axis(ax, origin, arrow_attr[order[i]]['point'], arrow_attr[order[i]]['color'], arrow_attr[order[i]]['label'])
# draw_axis(ax, origin, rot_y, 'g', label='right')
# draw_axis(ax, origin, rot_z, 'b', label='top')
# draw_axis(ax, origin, rot_x, 'r', label='front')
# 关闭坐标轴和网格
ax.set_axis_off()
ax.grid(False)
# 设置坐标范围
ax.set_xlim(-5, 5)
ax.set_ylim(-5, 5)
from render import render, Model
import math
def render_3D_axis(phi, theta, gamma):
radius = 240
# camera_location = [radius * math.cos(phi), radius * math.sin(phi), radius * math.tan(theta)]
# print(camera_location)
camera_location = [-1*radius * math.cos(phi), -1*radius * math.tan(theta), radius * math.sin(phi)]
img = render(
# Model("res/jinx.obj", texture_filename="res/jinx.tga"),
Model("./axis.obj", texture_filename="./axis.png"),
height=512,
width=512,
filename="tmp_render.png",
cam_loc = camera_location
)
img = img.rotate(gamma)
return img
def overlay_images_with_scaling(center_image: Image.Image, background_image, target_size=(512, 512)):
"""
调整前景图像大小为 512x512,将背景图像缩放以适配,并中心对齐叠加
:param center_image: 前景图像
:param background_image: 背景图像
:param target_size: 前景图像的目标大小,默认 (512, 512)
:return: 叠加后的图像
"""
# 确保输入图像为 RGBA 模式
if center_image.mode != "RGBA":
center_image = center_image.convert("RGBA")
if background_image.mode != "RGBA":
background_image = background_image.convert("RGBA")
# 调整前景图像大小
center_image = center_image.resize(target_size)
# 缩放背景图像,确保其适合前景图像的尺寸
bg_width, bg_height = background_image.size
target_width, target_height = target_size
# 按宽度或高度等比例缩放背景
scale = max(target_width / bg_width, target_height / bg_height)
new_size = (int(bg_width * scale), int(bg_height * scale))
resized_background = background_image.resize(new_size)
# 裁剪背景图像至目标大小
left = (new_size[0] - target_width) // 2
top = (new_size[1] - target_height) // 2
right = left + target_width
bottom = top + target_height
cropped_background = resized_background.crop((left, top, right, bottom))
# 将前景图像叠加到背景图像上
result = cropped_background.copy()
result.paste(center_image, (0, 0), mask=center_image)
return result