Viccky commited on
Commit
ef7f67a
·
verified ·
1 Parent(s): 6da2aa6

Uploaded app.py and requirements

Browse files

For classifying into three classes

Files changed (2) hide show
  1. app.py +38 -7
  2. requirements.txt +2 -0
app.py CHANGED
@@ -1,7 +1,38 @@
1
- import gradio as gr
2
-
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
-
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ from tensorflow.keras.models import load_model
4
+ from tensorflow.keras.preprocessing import image
5
+
6
+ # Load your trained model
7
+ model = load_model('my_modelled.h5')
8
+
9
+ # Define the class labels
10
+ class_labels = ['DR', 'DME', 'NONE']
11
+
12
+ def classify_image(img):
13
+ # Preprocess the image for the model
14
+ img = img.resize((256, 256)) # Resize image to match model input
15
+ img_array = image.img_to_array(img)
16
+ img_array = np.expand_dims(img_array, axis=0)
17
+ img_array = img_array / 255.0 # Normalize the image
18
+
19
+ # Predict the class
20
+ prediction = model.predict(img_array)
21
+ class_index = np.argmax(prediction)
22
+ class_label = class_labels[class_index]
23
+
24
+ return class_label
25
+
26
+ def create_interface():
27
+ # Define the Gradio interface
28
+ iface = gr.Interface(
29
+ fn=classify_image,
30
+ inputs=gr.inputs.Image(shape=(256, 256)),
31
+ outputs=gr.outputs.Label(num_top_classes=3),
32
+ live=True
33
+ )
34
+ return iface
35
+
36
+ if __name__ == "__main__":
37
+ interface = create_interface()
38
+ interface.launch()
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ tensorflow
2
+ gradio