Vetri04 commited on
Commit
27084d5
·
verified ·
1 Parent(s): a85dd78

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -62
app.py CHANGED
@@ -1,63 +1,48 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ import pandas as pd
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer
4
+
5
+ # Load the dataset
6
+ df = pd.read_csv("climate_data.csv") # Replace with your actual file name
7
+
8
+ # Load the LLaMa model and tokenizer
9
+ model_name = "huggingface/llama" # Replace with actual LLaMa model
10
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
11
+ model = AutoModelForCausalLM.from_pretrained(model_name)
12
+
13
+ # Function to get model responses
14
+ def ask_llama(question):
15
+ inputs = tokenizer(question, return_tensors="pt")
16
+ outputs = model.generate(inputs.input_ids, max_length=100)
17
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
18
+
19
+ # Function to fetch data from the dataset
20
+ def fetch_data_from_dataset(query, df):
21
+ if "year" in query:
22
+ year = int(query.split("year")[-1].strip())
23
+ return df[df['year'] == year].to_dict(orient="records")
24
+
25
+ if "scenario" in query:
26
+ scenario = query.split("scenario")[-1].strip()
27
+ columns = [col for col in df.columns if scenario in col]
28
+ return df[columns].to_dict(orient="records")
29
+
30
+ return "Sorry, I couldn't find any relevant data."
31
+
32
+ # Combined function to answer user questions
33
+ def answer_question(query):
34
+ # Step 1: Get response from LLaMa model
35
+ llama_response = ask_llama(query)
36
+
37
+ # Step 2: Fetch data based on response
38
+ data_response = fetch_data_from_dataset(llama_response, df)
39
+
40
+ return data_response
41
+
42
+ # Define the Gradio interface
43
+ interface = gr.Interface(fn=answer_question, inputs="text", outputs="text",
44
+ title="Climate Data Explorer",
45
+ description="Ask questions about climate data")
46
+
47
+ # Launch the app
48
+ interface.launch()