Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,48 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
""
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
-
)
|
60 |
-
|
61 |
-
|
62 |
-
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
|
5 |
+
# Load the dataset
|
6 |
+
df = pd.read_csv("climate_data.csv") # Replace with your actual file name
|
7 |
+
|
8 |
+
# Load the LLaMa model and tokenizer
|
9 |
+
model_name = "huggingface/llama" # Replace with actual LLaMa model
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
12 |
+
|
13 |
+
# Function to get model responses
|
14 |
+
def ask_llama(question):
|
15 |
+
inputs = tokenizer(question, return_tensors="pt")
|
16 |
+
outputs = model.generate(inputs.input_ids, max_length=100)
|
17 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
18 |
+
|
19 |
+
# Function to fetch data from the dataset
|
20 |
+
def fetch_data_from_dataset(query, df):
|
21 |
+
if "year" in query:
|
22 |
+
year = int(query.split("year")[-1].strip())
|
23 |
+
return df[df['year'] == year].to_dict(orient="records")
|
24 |
+
|
25 |
+
if "scenario" in query:
|
26 |
+
scenario = query.split("scenario")[-1].strip()
|
27 |
+
columns = [col for col in df.columns if scenario in col]
|
28 |
+
return df[columns].to_dict(orient="records")
|
29 |
+
|
30 |
+
return "Sorry, I couldn't find any relevant data."
|
31 |
+
|
32 |
+
# Combined function to answer user questions
|
33 |
+
def answer_question(query):
|
34 |
+
# Step 1: Get response from LLaMa model
|
35 |
+
llama_response = ask_llama(query)
|
36 |
+
|
37 |
+
# Step 2: Fetch data based on response
|
38 |
+
data_response = fetch_data_from_dataset(llama_response, df)
|
39 |
+
|
40 |
+
return data_response
|
41 |
+
|
42 |
+
# Define the Gradio interface
|
43 |
+
interface = gr.Interface(fn=answer_question, inputs="text", outputs="text",
|
44 |
+
title="Climate Data Explorer",
|
45 |
+
description="Ask questions about climate data")
|
46 |
+
|
47 |
+
# Launch the app
|
48 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|