Spaces:
Sleeping
Sleeping
Vasanth
commited on
Commit
·
4d8deb8
1
Parent(s):
445f5b9
Researcher Done
Browse files- .env +3 -0
- app.py +37 -0
- config.py +18 -0
- requirements.txt +122 -0
- researcher.py +93 -0
.env
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
GROQ_API_KEY = "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"
|
2 |
+
SERPER_API_KEY = "a89c1bc89b03a84f903ebe84e0c389fc16d2a072"
|
3 |
+
SERPER_API_KEY = "a89c1bc89b03a84f903ebe84e0c389fc16d2a072"
|
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from streamlit_chat import message
|
3 |
+
from researcher import Researcher
|
4 |
+
from dotenv import find_dotenv, load_dotenv
|
5 |
+
load_dotenv(find_dotenv())
|
6 |
+
st.set_page_config(layout="wide")
|
7 |
+
st.session_state.clicked=True
|
8 |
+
|
9 |
+
@st.cache_resource(show_spinner=True)
|
10 |
+
def create_researcher():
|
11 |
+
researcher = Researcher()
|
12 |
+
return researcher
|
13 |
+
research_apprentice = create_researcher()
|
14 |
+
|
15 |
+
def display_conversation(history):
|
16 |
+
for i in range(len(history["apprentice"])):
|
17 |
+
message(history["user"][i], is_user=True, key=str(i) + "_user")
|
18 |
+
message(history["apprentice"][i], key=str(i))
|
19 |
+
|
20 |
+
if st.session_state.clicked:
|
21 |
+
st.title("InfoGenie - Your 24/7 AI Research Apprentice 🧑💻")
|
22 |
+
st.subheader("An AI apprentice who can serve you 24/7 by researching on a given question in realtime over Internet and provide you answers accurately within a blink of an eye.")
|
23 |
+
|
24 |
+
if "apprentice" not in st.session_state:
|
25 |
+
st.session_state["apprentice"] = ["Hello. How can I help you?"]
|
26 |
+
if "user" not in st.session_state:
|
27 |
+
st.session_state["user"] = ["Hey InfoGenie!"]
|
28 |
+
with st.expander("Command InfoGenie"):
|
29 |
+
research_query_input = st.text_input("Resarch Query")
|
30 |
+
if st.button("Send"):
|
31 |
+
robowiz_output = research_apprentice.research(research_query_input)
|
32 |
+
|
33 |
+
st.session_state["user"].append(research_query_input)
|
34 |
+
st.session_state["apprentice"].append(robowiz_output)
|
35 |
+
|
36 |
+
if st.session_state["apprentice"]:
|
37 |
+
display_conversation(st.session_state)
|
config.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
PROMPT_TEMPLATE = """
|
2 |
+
You are a great researcher. With the information provided understand in deep and try to answer the question.
|
3 |
+
If you cant answer the question based on the information either say you cant find an answer or unable to find an answer.
|
4 |
+
So try to understand in depth about the context and answer only based on the information provided. Dont generate irrelevant answers.
|
5 |
+
|
6 |
+
Context: {context}
|
7 |
+
Question: {question}
|
8 |
+
Do provide only helpful answers
|
9 |
+
|
10 |
+
Answer:
|
11 |
+
"""
|
12 |
+
INPUT_VARIABLES = ["context", "question"]
|
13 |
+
SEPARATORS = "\n"
|
14 |
+
CHUNK_SIZE = 10000
|
15 |
+
CHUNK_OVERLAP = 1000
|
16 |
+
EMBEDDER = "BAAI/bge-base-en-v1.5"
|
17 |
+
CHAIN_TYPE = "stuff"
|
18 |
+
SEARCH_KWARGS = {'k': 3}
|
requirements.txt
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiohttp==3.9.3
|
2 |
+
aiosignal==1.3.1
|
3 |
+
altair==5.2.0
|
4 |
+
annotated-types==0.6.0
|
5 |
+
anyio==4.3.0
|
6 |
+
attrs==23.2.0
|
7 |
+
backoff==2.2.1
|
8 |
+
beautifulsoup4==4.12.3
|
9 |
+
blinker==1.7.0
|
10 |
+
cachetools==5.3.3
|
11 |
+
certifi==2024.2.2
|
12 |
+
chardet==5.2.0
|
13 |
+
charset-normalizer==3.3.2
|
14 |
+
click==8.1.7
|
15 |
+
colorama==0.4.6
|
16 |
+
contourpy==1.2.0
|
17 |
+
cycler==0.12.1
|
18 |
+
dataclasses-json==0.6.4
|
19 |
+
distro==1.9.0
|
20 |
+
emoji==2.10.1
|
21 |
+
faiss-cpu==1.8.0
|
22 |
+
filelock==3.9.0
|
23 |
+
filetype==1.2.0
|
24 |
+
fonttools==4.49.0
|
25 |
+
frozenlist==1.4.1
|
26 |
+
fsspec==2024.2.0
|
27 |
+
gitdb==4.0.11
|
28 |
+
GitPython==3.1.42
|
29 |
+
greenlet==3.0.3
|
30 |
+
groq==0.4.2
|
31 |
+
h11==0.14.0
|
32 |
+
httpcore==1.0.4
|
33 |
+
httpx==0.27.0
|
34 |
+
huggingface-hub==0.21.3
|
35 |
+
idna==3.6
|
36 |
+
importlib-metadata==7.0.1
|
37 |
+
Jinja2==3.1.2
|
38 |
+
joblib==1.3.2
|
39 |
+
jsonpatch==1.33
|
40 |
+
jsonpath-python==1.0.6
|
41 |
+
jsonpointer==2.4
|
42 |
+
jsonschema==4.21.1
|
43 |
+
jsonschema-specifications==2023.12.1
|
44 |
+
kiwisolver==1.4.5
|
45 |
+
langchain==0.1.10
|
46 |
+
langchain-community==0.0.25
|
47 |
+
langchain-core==0.1.28
|
48 |
+
langchain-groq==0.0.1
|
49 |
+
langchain-text-splitters==0.0.1
|
50 |
+
langdetect==1.0.9
|
51 |
+
langsmith==0.1.14
|
52 |
+
lxml==5.1.0
|
53 |
+
markdown-it-py==3.0.0
|
54 |
+
MarkupSafe==2.1.3
|
55 |
+
marshmallow==3.21.0
|
56 |
+
matplotlib==3.8.3
|
57 |
+
mdurl==0.1.2
|
58 |
+
mpmath==1.3.0
|
59 |
+
multidict==6.0.5
|
60 |
+
mypy-extensions==1.0.0
|
61 |
+
networkx==3.2.1
|
62 |
+
nltk==3.8.1
|
63 |
+
numpy==1.26.4
|
64 |
+
orjson==3.9.15
|
65 |
+
packaging==23.2
|
66 |
+
pandas==2.2.1
|
67 |
+
pillow==10.2.0
|
68 |
+
protobuf==4.25.3
|
69 |
+
pyarrow==15.0.0
|
70 |
+
pydantic==2.6.3
|
71 |
+
pydantic_core==2.16.3
|
72 |
+
pydeck==0.8.1b0
|
73 |
+
Pygments==2.17.2
|
74 |
+
pyparsing==3.1.1
|
75 |
+
python-dateutil==2.9.0.post0
|
76 |
+
python-dotenv==1.0.1
|
77 |
+
python-iso639==2024.2.7
|
78 |
+
pytz==2024.1
|
79 |
+
PyYAML==6.0.1
|
80 |
+
rapidfuzz==3.6.1
|
81 |
+
referencing==0.33.0
|
82 |
+
regex==2023.12.25
|
83 |
+
requests==2.31.0
|
84 |
+
rich==13.7.1
|
85 |
+
rpds-py==0.18.0
|
86 |
+
safetensors==0.4.2
|
87 |
+
scikit-learn==1.4.1.post1
|
88 |
+
scipy==1.12.0
|
89 |
+
seaborn==0.13.2
|
90 |
+
sentence-transformers==2.5.1
|
91 |
+
six==1.16.0
|
92 |
+
smmap==5.0.1
|
93 |
+
sniffio==1.3.1
|
94 |
+
soupsieve==2.5
|
95 |
+
SQLAlchemy==2.0.27
|
96 |
+
streamlit==1.31.1
|
97 |
+
streamlit-chat==0.1.1
|
98 |
+
sympy==1.12
|
99 |
+
tabulate==0.9.0
|
100 |
+
tenacity==8.2.3
|
101 |
+
threadpoolctl==3.3.0
|
102 |
+
tokenizers==0.15.2
|
103 |
+
toml==0.10.2
|
104 |
+
toolz==0.12.1
|
105 |
+
torch==2.2.1
|
106 |
+
torchaudio==2.2.1
|
107 |
+
torchvision==0.17.1
|
108 |
+
tornado==6.4
|
109 |
+
tqdm==4.66.2
|
110 |
+
transformers==4.38.2
|
111 |
+
typing-inspect==0.9.0
|
112 |
+
typing_extensions==4.8.0
|
113 |
+
tzdata==2024.1
|
114 |
+
tzlocal==5.2
|
115 |
+
unstructured==0.11.8
|
116 |
+
unstructured-client==0.21.0
|
117 |
+
urllib3==2.2.1
|
118 |
+
validators==0.22.0
|
119 |
+
watchdog==4.0.0
|
120 |
+
wrapt==1.16.0
|
121 |
+
yarl==1.9.4
|
122 |
+
zipp==3.17.0
|
researcher.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from config import *
|
2 |
+
import os
|
3 |
+
from dotenv import load_dotenv, find_dotenv
|
4 |
+
import json
|
5 |
+
import requests
|
6 |
+
from langchain_groq import ChatGroq
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
from langchain.prompts import PromptTemplate
|
10 |
+
from langchain.document_loaders.url import UnstructuredURLLoader
|
11 |
+
from langchain.vectorstores.faiss import FAISS
|
12 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
13 |
+
import os
|
14 |
+
load_dotenv(find_dotenv())
|
15 |
+
from langchain.globals import set_debug
|
16 |
+
|
17 |
+
set_debug(True)
|
18 |
+
|
19 |
+
class Researcher:
|
20 |
+
|
21 |
+
def __init__(self):
|
22 |
+
self.serper_api_key = os.getenv("SERPER_API_KEY")
|
23 |
+
self.groq_api_key = os.getenv("GROQ_API_KEY")
|
24 |
+
self.prompt_template = PromptTemplate(
|
25 |
+
template=PROMPT_TEMPLATE,
|
26 |
+
input_variables=INPUT_VARIABLES
|
27 |
+
)
|
28 |
+
self.text_splitter = RecursiveCharacterTextSplitter(
|
29 |
+
separators=SEPARATORS,
|
30 |
+
chunk_size=CHUNK_SIZE,
|
31 |
+
chunk_overlap=CHUNK_OVERLAP
|
32 |
+
)
|
33 |
+
self.llm = ChatGroq(temperature=0.5, model_name="mixtral-8x7b-32768", groq_api_key=self.groq_api_key)
|
34 |
+
self.hfembeddings = HuggingFaceEmbeddings(
|
35 |
+
model_name=EMBEDDER,
|
36 |
+
model_kwargs={'device': 'cpu'}
|
37 |
+
)
|
38 |
+
|
39 |
+
def search_articles(self, query):
|
40 |
+
|
41 |
+
url = "https://google.serper.dev/search"
|
42 |
+
data = json.dumps({"q":query})
|
43 |
+
|
44 |
+
headers = {
|
45 |
+
'X-API-KEY': self.serper_api_key,
|
46 |
+
'Content-Type': 'application/json'
|
47 |
+
}
|
48 |
+
|
49 |
+
response = requests.request("POST", url, headers=headers, data=data)
|
50 |
+
|
51 |
+
return response.json()
|
52 |
+
|
53 |
+
def research_answerer(self):
|
54 |
+
|
55 |
+
research_qa_chain = RetrievalQA.from_chain_type(
|
56 |
+
llm=self.llm,
|
57 |
+
chain_type=CHAIN_TYPE,
|
58 |
+
retriever= self.db.as_retriever(search_kwargs=SEARCH_KWARGS),
|
59 |
+
return_source_documents=True,
|
60 |
+
verbose=True,
|
61 |
+
chain_type_kwargs={"prompt": self.prompt_template}
|
62 |
+
)
|
63 |
+
return research_qa_chain
|
64 |
+
|
65 |
+
def get_urls(self, articles):
|
66 |
+
urls = []
|
67 |
+
try:
|
68 |
+
urls.append(articles["answerBox"]["link"])
|
69 |
+
except:
|
70 |
+
pass
|
71 |
+
for i in range(0, min(3, len(articles["organic"]))):
|
72 |
+
urls.append(articles["organic"][i]["link"])
|
73 |
+
return urls
|
74 |
+
|
75 |
+
def get_content_from_urls(self, urls):
|
76 |
+
loader = UnstructuredURLLoader(urls=urls)
|
77 |
+
research_content = loader.load()
|
78 |
+
return research_content
|
79 |
+
|
80 |
+
def research_given_query(self, research_objective, research_content):
|
81 |
+
|
82 |
+
docs = self.text_splitter.split_documents(research_content)
|
83 |
+
self.db = FAISS.from_documents(documents=docs, embedding=self.hfembeddings)
|
84 |
+
bot = self.research_answerer()
|
85 |
+
research_out =bot({"query": research_objective})
|
86 |
+
return research_out["result"]
|
87 |
+
|
88 |
+
def research(self, query):
|
89 |
+
search_articles = self.search_articles(query)
|
90 |
+
urls = self.get_urls(search_articles)
|
91 |
+
research_content = self.get_content_from_urls(urls)
|
92 |
+
answer = self.research_given_query(query, research_content)
|
93 |
+
return answer
|