from transformers import TextClassificationPipeline, AutoTokenizer, AutoModelForSequenceClassification import gradio as gr model = AutoModelForSequenceClassification.from_pretrained("vangmayy/emotion") tokenizer = AutoTokenizer.from_pretrained("vangmayy/emotion") labels = ["sadness", "Joy", "love", "anger", "fear", "surprise"] label_map={ 'LABEL_0':'Sadness', 'LABEL_1':'Joy', 'LABEL_2':'love', 'LABEL_3':'anger', 'LABEL_4':'fear', 'LABEL_5':'surprise' } pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer) def run_inference(text): emotion = label_map[pipe(text)[0]['label']] return "Emotion detected: " + emotion intf = gr.Interface(fn = run_inference, inputs =["text"], outputs = ["text"], examples = ["Woah this is so cool", "I feel sad about what happened", "That room is so dark! I am not going inside"]) intf.launch()