Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import TextClassificationPipeline, AutoTokenizer, AutoModelForCausalLM
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
6 |
+
model = AutoModelForCausalLM.from_pretrained("Vangmayy/Bollywood-Summary-Generator")
|
7 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
8 |
+
|
9 |
+
def run_inference(input_text):
|
10 |
+
input_text = str(input_text)
|
11 |
+
input_ids = tokenizer.encode(input_text, return_tensors = "pt")
|
12 |
+
input_ids.to(device)
|
13 |
+
new_model = AutoModelForCausalLM.from_pretrained("Vangmayy/Bollywood-Summary-Generator")
|
14 |
+
output = new_model.generate(input_ids, max_length = 5000, num_return_sequences = 1)
|
15 |
+
output = tokenizer.decode(output[0], skip_special_tokens = True)
|
16 |
+
return output
|
17 |
+
|
18 |
+
genres = ["Action", "Comedy", "Drama", "Horror", "Romance", "Sci-Fi", "Thriller"]
|
19 |
+
|
20 |
+
with gr.Blocks() as intf:
|
21 |
+
gr.Markdown("## Movie Summary Generator")
|
22 |
+
|
23 |
+
with gr.Row():
|
24 |
+
genre_checkboxes = gr.CheckboxGroup(choices=genres, label="Select Genres")
|
25 |
+
summary_output = gr.Textbox(label="Generated Summary")
|
26 |
+
|
27 |
+
generate_button = gr.Button("Generate Summary")
|
28 |
+
|
29 |
+
def on_click(selected_genres):
|
30 |
+
return run_inference(selected_genres)
|
31 |
+
|
32 |
+
generate_button.click(on_click, inputs=genre_checkboxes, outputs=summary_output)
|
33 |
+
|
34 |
+
intf.launch()
|