File size: 12,271 Bytes
ce611b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68d674a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import spacy
import re
from word2number import w2n

# Load the spacy model with GloVe embeddings
nlp = spacy.load("en_core_web_lg")


def capture_numbers(input_sentence):
    '''
      This is a function to capture cases of refered numbers either in numeric or free-text form
    '''

    try:
        # Define the regular expression patterns
        pattern1 = r"(\d+|\w+(?:\s+\w+)*)\s+(decimal|point|dot|comma)\s+(\d+|\w+(?:\s+\w+)*)"

        # Find all matches in the text
        matches = re.findall(pattern1, input_sentence)

        # This part is to capture cases like six point five, 5 point five, six point 5, 5 point 5
        pattern_numbers = []
        for match in matches:
            if len(match) == 3:
                # add the $pattern string to easily specify them in a subsequent step
                full_string = "{} {} {} {}".format(match[0], match[1], match[2], '$pattern')
                pattern_numbers.append(full_string)

        for elem in pattern_numbers:
            input_sentence = input_sentence.replace(elem, " ")

        if pattern_numbers:
            # Remove duplicates with set and convert back to list
            pattern_final_numbers = list(set(pattern_numbers))
        else:
            pattern_final_numbers = []

        # we delete the captured references from the sentence, because if we capture something like seven point five
        # then spacy will also identify seven and five, which we do not want it to
        for element in pattern_final_numbers:
            target_elem = element.replace("$pattern", "").strip()
            if target_elem in input_sentence:
                input_sentence = input_sentence.replace(target_elem, " ")

        # This is for cases of thirty eight or one million and two, etc.

        # Define a regular expression to match multiword free-text numbers
        pattern2 = r"(?<!\w)(?:(?:zero|one|two|three|four|five|six|seven|eight|nine|ten|eleven|twelve|thirteen|fourteen|fifteen|sixteen|seventeen|eighteen|nineteen|twenty|thirty|forty|fifty|sixty|seventy|eighty|ninety|hundred|thousand|million|billion|trillion)(?:\s(?:and\s)?(?:zero|one|two|three|four|five|six|seven|eight|nine|ten|eleven|twelve|thirteen|fourteen|fifteen|sixteen|seventeen|eighteen|nineteen|twenty|thirty|forty|fifty|sixty|seventy|eighty|ninety|hundred|thousand|million|billion|trillion))+\s?)+(?!\w*pennies)"

        # Find all multiword free-text number matches in the sentence
        multi_numbers = re.findall(pattern2, input_sentence)

        if multi_numbers:
            multinumber_final_numbers = list(set(multi_numbers))
        else:
            multinumber_final_numbers = []

        for elem in multinumber_final_numbers:
            if elem in input_sentence:
                input_sentence = input_sentence.replace(elem, " ")

        # we also delete the captured references from the sentence in this case
        for element in multinumber_final_numbers:
            target_elem = element.replace("$pattern", "").strip()
            if target_elem in input_sentence:
                input_sentence = input_sentence.replace(target_elem, " ")

        # Parse the input sentence with Spacy
        doc = nlp(input_sentence)

        # This is to capture all the numbers in int and float form, as well as numbers like eight, two, hundred
        s_numbers = [token.text for token in doc if token.like_num]

        if s_numbers:
            # Remove duplicates with set and convert back to list
            spacy_final_numbers = list(set(s_numbers))

        else:
            spacy_final_numbers = []

        # return the extracted numbers
        return pattern_final_numbers + multinumber_final_numbers + spacy_final_numbers

    except:
        return 0


def numeric_number_dot_freetext(text):
    '''
    This is a function to convert cases of '6 point five, six point 5 etc'
    '''

    try:
        # # Define a dictionary to map words to numbers
        num_dict = {
            'zero': 0,
            'one': 1,
            'two': 2,
            'three': 3,
            'four': 4,
            'five': 5,
            'six': 6,
            'seven': 7,
            'eight': 8,
            'nine': 9,
            'ten': 10,
            'eleven': 11,
            'twelve': 12,
            'thirteen': 13,
            'fourteen': 14,
            'fifteen': 15,
            'sixteen': 16,
            'seventeen': 17,
            'eighteen': 18,
            'nineteen': 19,
            'twenty': 20,
            'thirty': 30,
            'forty': 40,
            'fifty': 50,
            'sixty': 60,
            'seventy': 70,
            'eighty': 80,
            'ninety': 90,
            'hundred': 100,
            'thousand': 1000,
            'million': 1000000,
            'billion': 1000000000,
            'trillion': 1000000000000
        }

        # # Define a regular expression pattern to extract the numeric form and free text form from input text
        pattern = r"(\d+|\w+(?:\s+\w+)*)\s+(?:decimal|point|dot|comma)\s+(\d+|\w+(?:\s+\w+)*)"

        # Use regular expression to extract the numeric form and free text form from input text
        match = re.search(pattern, text)

        if match:
            num1 = match.group(1)
            num2 = match.group(2)

            # If the numeric form is a word, map it to its numerical value
            if num1 in num_dict:
                num1 = num_dict[num1]

            # if not in the dictionary try also with the w2n library
            else:

                # try to convert to float. That means this is a number, otherwise it is a string so continue
                try:
                    num1 = float(num1)
                except:

                    # this will handle cases like "bla bla bla seven"
                    try:
                        num1 = w2n.word_to_num(num1)

                    # this is to handle cases like "bla bla bla 7"
                    except:

                        try:
                            # we identify all the numeric references
                            num_ref1 = [int(ref) for ref in re.findall(r'\d+', num1)]

                            # if there is exactly one number then we cope with that
                            if len(num_ref1) == 1:
                                num1 = num_ref1[0]

                            # in any other case throw an error
                            elif len(num_ref1) > 1:
                                return (0, 'MAGNITUDE', 'more_magnitude')

                            elif len(num_ref1) == 0:
                                return (0, 'MAGNITUDE', 'no_magnitude')

                        except:
                            return (0, 'MAGNITUDE', 'unknown_error')

            # If the free text form is a word, map it to its numerical value
            if num2 in num_dict:
                num2 = num_dict[num2]

            else:
                try:
                    num2 = int(num2)
                except:
                    try:
                        num2 = w2n.word_to_num(num2)
                    except:
                        try:
                            # we identify all the numeric references
                            num_ref2 = [int(ref) for ref in re.findall(r'\d+', num2)]

                            # if there is exactly one number then we cope with that
                            if len(num_ref2) == 1:
                                num2 = num_ref2[0]

                            # in any other case throw an error
                            elif len(num_ref2) > 1:
                                return (0, 'MAGNITUDE', 'more_magnitude')

                            elif len(num_ref2) == 0:
                                return (0, 'MAGNITUDE', 'no_magnitude')

                        except:
                            return (0, 'MAGNITUDE', 'unknown_error')

            try:
                # Convert both parts to float and add them together to get the final decimal value
                result = float(num1) + float(num2) / (10 ** len(str(num2)))
                return result
            except:
                return (0, 'MAGNITUDE', 'unknown_error')


        else:
            # If input text doesn't match the expected pattern, return None
            return 0

    except:
        return 0


def convert_into_numeric(num_list):
    '''
    This is a function to convert the identified numbers into a numeric form
    '''

    if num_list:

        # at first we examine how many numbers were captured. Only one number should exist
        if len(num_list) > 1:
            return (0, 'MAGNITUDE', 'more_magnitude')

        else:
            target_num = num_list[0]

            # case it is an integer or float, convert it, otherwise move to following cases
            try:

                target_num_float = float(target_num)
                return {'Number': target_num}

            except:

                # at first we check for cases like 6,5. If such cases exist we return a format error, otherwise we continue as before
                if ',' in target_num:
                    try:
                        target_num = float(target_num.replace(",", "."))
                        return (0, 'MAGNITUDE', 'format_error')

                    except:
                        return (0, 'MAGNITUDE', 'unknown_error')

                else:

                    # case that it belongs to one of the patterns of freetext number followed by numeric form etc (all the combinations)
                    if "$pattern" in target_num:
                        num, _ = target_num.split("$")

                        # try with this function for all the rest of cases (6 point 5, 6 point five, six point 5)
                        num_conversion = numeric_number_dot_freetext(num)

                        if num_conversion:
                            return {'Number': num_conversion}

                    # if none of the above has worked, then examine the case of freetext numbers without patterns (e.g. two, million, twenty three, etc)
                    else:
                        try:
                            num_conversion = w2n.word_to_num(target_num)
                            return {'Number': num_conversion}

                        # if none of the above try to handle cases of "million and two" or "a million and two". In such cases, we delete any 'a' reference
                        # and we insert the word 'one' at the beginning. In that way the w2n library can handle them besides immediately throw an error
                        except:

                            try:
                                target_num = target_num.replace(" a ", " ")
                                new_target_num = "one " + target_num
                                num_conversion = w2n.word_to_num(new_target_num)
                                return {'Number': num_conversion}

                            except:
                                return (0, 'MAGNITUDE', 'unknown_error')

    else:
        return (0, 'MAGNITUDE', 'no_magnitude')


def magnitude_binding(input_text):
    '''
    This is a function that binds together all the subcomponents of the magnitude number identification, while also controlling for multiple, or zero magnitude references
    '''

    try:

        # capture the referred magnitudes
        target_numbers = capture_numbers(input_text)

        # we only accept for one magnitude reference
        if len(target_numbers) == 1:
            numeric_target_numbers = convert_into_numeric(target_numbers)

            return numeric_target_numbers

        # in case of zero references return the appropriate code (to aid returning the correct prompt)
        elif len(target_numbers) == 0:
            return (0, 'MAGNITUDE', 'no_magnitude')

        # in case of more than one references return the appropriate code (to aid returning the correct prompt)
        elif len(target_numbers) > 1:
            return (0, 'MAGNITUDE', 'more_magnitude')

        # in case of unexpected error return the appropriate code (to aid returning the correct prompt)
        else:
            return (0, 'MAGNITUDE', 'unknown_error')

    except:
        return (0, 'MAGNITUDE', 'unknown_error')