# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. # pyre-unsafe import logging import numpy as np from typing import Any, Callable, Dict, List, Optional, Union import torch from torch.utils.data.dataset import Dataset from detectron2.data.detection_utils import read_image ImageTransform = Callable[[torch.Tensor], torch.Tensor] class ImageListDataset(Dataset): """ Dataset that provides images from a list. """ _EMPTY_IMAGE = torch.empty((0, 3, 1, 1)) def __init__( self, image_list: List[str], category_list: Union[str, List[str], None] = None, transform: Optional[ImageTransform] = None, ): """ Args: image_list (List[str]): list of paths to image files category_list (Union[str, List[str], None]): list of animal categories for each image. If it is a string, or None, this applies to all images """ if type(category_list) is list: self.category_list = category_list else: self.category_list = [category_list] * len(image_list) assert len(image_list) == len( self.category_list ), "length of image and category lists must be equal" self.image_list = image_list self.transform = transform def __getitem__(self, idx: int) -> Dict[str, Any]: """ Gets selected images from the list Args: idx (int): video index in the video list file Returns: A dictionary containing two keys: images (torch.Tensor): tensor of size [N, 3, H, W] (N = 1, or 0 for _EMPTY_IMAGE) categories (List[str]): categories of the frames """ categories = [self.category_list[idx]] fpath = self.image_list[idx] transform = self.transform try: image = torch.from_numpy(np.ascontiguousarray(read_image(fpath, format="BGR"))) image = image.permute(2, 0, 1).unsqueeze(0).float() # HWC -> NCHW if transform is not None: image = transform(image) return {"images": image, "categories": categories} except (OSError, RuntimeError) as e: logger = logging.getLogger(__name__) logger.warning(f"Error opening image file container {fpath}: {e}") return {"images": self._EMPTY_IMAGE, "categories": []} def __len__(self): return len(self.image_list)