Vaibhavnaik12 commited on
Commit
e87cfab
·
verified ·
1 Parent(s): 1a927f9

Delete model/model.cloth_masker.py

Browse files
Files changed (1) hide show
  1. model/model.cloth_masker.py +0 -273
model/model.cloth_masker.py DELETED
@@ -1,273 +0,0 @@
1
- import os
2
- from PIL import Image
3
- from typing import Union
4
- import numpy as np
5
- import cv2
6
- from diffusers.image_processor import VaeImageProcessor
7
- import torch
8
-
9
- from model.SCHP import SCHP # type: ignore
10
- from model.DensePose import DensePose # type: ignore
11
-
12
- DENSE_INDEX_MAP = {
13
- "background": [0],
14
- "torso": [1, 2],
15
- "right hand": [3],
16
- "left hand": [4],
17
- "right foot": [5],
18
- "left foot": [6],
19
- "right thigh": [7, 9],
20
- "left thigh": [8, 10],
21
- "right leg": [11, 13],
22
- "left leg": [12, 14],
23
- "left big arm": [15, 17],
24
- "right big arm": [16, 18],
25
- "left forearm": [19, 21],
26
- "right forearm": [20, 22],
27
- "face": [23, 24],
28
- "thighs": [7, 8, 9, 10],
29
- "legs": [11, 12, 13, 14],
30
- "hands": [3, 4],
31
- "feet": [5, 6],
32
- "big arms": [15, 16, 17, 18],
33
- "forearms": [19, 20, 21, 22],
34
- }
35
-
36
- ATR_MAPPING = {
37
- 'Background': 0, 'Hat': 1, 'Hair': 2, 'Sunglasses': 3,
38
- 'Upper-clothes': 4, 'Skirt': 5, 'Pants': 6, 'Dress': 7,
39
- 'Belt': 8, 'Left-shoe': 9, 'Right-shoe': 10, 'Face': 11,
40
- 'Left-leg': 12, 'Right-leg': 13, 'Left-arm': 14, 'Right-arm': 15,
41
- 'Bag': 16, 'Scarf': 17
42
- }
43
-
44
- LIP_MAPPING = {
45
- 'Background': 0, 'Hat': 1, 'Hair': 2, 'Glove': 3,
46
- 'Sunglasses': 4, 'Upper-clothes': 5, 'Dress': 6, 'Coat': 7,
47
- 'Socks': 8, 'Pants': 9, 'Jumpsuits': 10, 'Scarf': 11,
48
- 'Skirt': 12, 'Face': 13, 'Left-arm': 14, 'Right-arm': 15,
49
- 'Left-leg': 16, 'Right-leg': 17, 'Left-shoe': 18, 'Right-shoe': 19
50
- }
51
-
52
- PROTECT_BODY_PARTS = {
53
- 'upper': ['Left-leg', 'Right-leg'],
54
- 'lower': ['Right-arm', 'Left-arm', 'Face'],
55
- 'overall': [],
56
- 'inner': ['Left-leg', 'Right-leg'],
57
- 'outer': ['Left-leg', 'Right-leg'],
58
- }
59
- PROTECT_CLOTH_PARTS = {
60
- 'upper': {
61
- 'ATR': ['Skirt', 'Pants'],
62
- 'LIP': ['Skirt', 'Pants']
63
- },
64
- 'lower': {
65
- 'ATR': ['Upper-clothes'],
66
- 'LIP': ['Upper-clothes', 'Coat']
67
- },
68
- 'overall': {
69
- 'ATR': [],
70
- 'LIP': []
71
- },
72
- 'inner': {
73
- 'ATR': ['Dress', 'Coat', 'Skirt', 'Pants'],
74
- 'LIP': ['Dress', 'Coat', 'Skirt', 'Pants', 'Jumpsuits']
75
- },
76
- 'outer': {
77
- 'ATR': ['Dress', 'Pants', 'Skirt'],
78
- 'LIP': ['Upper-clothes', 'Dress', 'Pants', 'Skirt', 'Jumpsuits']
79
- }
80
- }
81
- MASK_CLOTH_PARTS = {
82
- 'upper': ['Upper-clothes', 'Coat', 'Dress', 'Jumpsuits'],
83
- 'lower': ['Pants', 'Skirt', 'Dress', 'Jumpsuits'],
84
- 'overall': ['Upper-clothes', 'Dress', 'Pants', 'Skirt', 'Coat', 'Jumpsuits'],
85
- 'inner': ['Upper-clothes'],
86
- 'outer': ['Coat',]
87
- }
88
- MASK_DENSE_PARTS = {
89
- 'upper': ['torso', 'big arms', 'forearms'],
90
- 'lower': ['thighs', 'legs'],
91
- 'overall': ['torso', 'thighs', 'legs', 'big arms', 'forearms'],
92
- 'inner': ['torso'],
93
- 'outer': ['torso', 'big arms', 'forearms']
94
- }
95
-
96
- schp_public_protect_parts = ['Hat', 'Hair', 'Sunglasses', 'Left-shoe', 'Right-shoe', 'Bag', 'Glove', 'Scarf']
97
- schp_protect_parts = {
98
- 'upper': ['Left-leg', 'Right-leg', 'Skirt', 'Pants', 'Jumpsuits'],
99
- 'lower': ['Left-arm', 'Right-arm', 'Upper-clothes', 'Coat'],
100
- 'overall': [],
101
- 'inner': ['Left-leg', 'Right-leg', 'Skirt', 'Pants', 'Jumpsuits', 'Coat'],
102
- 'outer': ['Left-leg', 'Right-leg', 'Skirt', 'Pants', 'Jumpsuits', 'Upper-clothes']
103
- }
104
- schp_mask_parts = {
105
- 'upper': ['Upper-clothes', 'Dress', 'Coat', 'Jumpsuits'],
106
- 'lower': ['Pants', 'Skirt', 'Dress', 'Jumpsuits', 'socks'],
107
- 'overall': ['Upper-clothes', 'Dress', 'Pants', 'Skirt', 'Coat', 'Jumpsuits', 'socks'],
108
- 'inner': ['Upper-clothes'],
109
- 'outer': ['Coat',]
110
- }
111
-
112
- dense_mask_parts = {
113
- 'upper': ['torso', 'big arms', 'forearms'],
114
- 'lower': ['thighs', 'legs'],
115
- 'overall': ['torso', 'thighs', 'legs', 'big arms', 'forearms'],
116
- 'inner': ['torso'],
117
- 'outer': ['torso', 'big arms', 'forearms']
118
- }
119
-
120
- def vis_mask(image, mask):
121
- image = np.array(image).astype(np.uint8)
122
- mask = np.array(mask).astype(np.uint8)
123
- mask[mask > 127] = 255
124
- mask[mask <= 127] = 0
125
- mask = np.expand_dims(mask, axis=-1)
126
- mask = np.repeat(mask, 3, axis=-1)
127
- mask = mask / 255
128
- return Image.fromarray((image * (1 - mask)).astype(np.uint8))
129
-
130
- def part_mask_of(part: Union[str, list],
131
- parse: np.ndarray, mapping: dict):
132
- if isinstance(part, str):
133
- part = [part]
134
- mask = np.zeros_like(parse)
135
- for _ in part:
136
- if _ not in mapping:
137
- continue
138
- if isinstance(mapping[_], list):
139
- for i in mapping[_]:
140
- mask += (parse == i)
141
- else:
142
- mask += (parse == mapping[_])
143
- return mask
144
-
145
- def hull_mask(mask_area: np.ndarray):
146
- ret, binary = cv2.threshold(mask_area, 127, 255, cv2.THRESH_BINARY)
147
- contours, hierarchy = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
148
- hull_mask = np.zeros_like(mask_area)
149
- for c in contours:
150
- hull = cv2.convexHull(c)
151
- hull_mask = cv2.fillPoly(np.zeros_like(mask_area), [hull], 255) | hull_mask
152
- return hull_mask
153
-
154
-
155
- class AutoMasker:
156
- def __init__(
157
- self,
158
- densepose_ckpt='./Models/DensePose',
159
- schp_ckpt='./Models/SCHP',
160
- device='cuda'):
161
- np.random.seed(0)
162
- torch.manual_seed(0)
163
- torch.cuda.manual_seed(0)
164
-
165
- self.densepose_processor = DensePose(densepose_ckpt, device)
166
- self.schp_processor_atr = SCHP(ckpt_path=os.path.join(schp_ckpt, 'exp-schp-201908301523-atr.pth'), device=device)
167
- self.schp_processor_lip = SCHP(ckpt_path=os.path.join(schp_ckpt, 'exp-schp-201908261155-lip.pth'), device=device)
168
-
169
- self.mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
170
-
171
- def process_densepose(self, image_or_path):
172
- return self.densepose_processor(image_or_path, resize=1024)
173
-
174
- def process_schp_lip(self, image_or_path):
175
- return self.schp_processor_lip(image_or_path)
176
-
177
- def process_schp_atr(self, image_or_path):
178
- return self.schp_processor_atr(image_or_path)
179
-
180
- def preprocess_image(self, image_or_path):
181
- return {
182
- 'densepose': self.densepose_processor(image_or_path, resize=1024),
183
- 'schp_atr': self.schp_processor_atr(image_or_path),
184
- 'schp_lip': self.schp_processor_lip(image_or_path)
185
- }
186
-
187
- @staticmethod
188
- def cloth_agnostic_mask(
189
- densepose_mask: Image.Image,
190
- schp_lip_mask: Image.Image,
191
- schp_atr_mask: Image.Image,
192
- part: str='overall',
193
- **kwargs
194
- ):
195
- assert part in ['upper', 'lower', 'overall', 'inner', 'outer'], f"part should be one of ['upper', 'lower', 'overall', 'inner', 'outer'], but got {part}"
196
- w, h = densepose_mask.size
197
-
198
- dilate_kernel = max(w, h) // 250
199
- dilate_kernel = dilate_kernel if dilate_kernel % 2 == 1 else dilate_kernel + 1
200
- dilate_kernel = np.ones((dilate_kernel, dilate_kernel), np.uint8)
201
-
202
- kernal_size = max(w, h) // 15
203
- kernal_size = kernal_size if kernal_size % 2 == 1 else kernal_size + 1
204
-
205
- densepose_mask = np.array(densepose_mask)
206
- schp_lip_mask = np.array(schp_lip_mask)
207
- schp_atr_mask = np.array(schp_atr_mask)
208
-
209
- # Strong Protect Area (Hands, Face, Accessory, Feet)
210
- hands_protect_area = part_mask_of(['hands', 'feet'], densepose_mask, DENSE_INDEX_MAP)
211
- hands_protect_area = cv2.dilate(hands_protect_area, dilate_kernel, iterations=1)
212
- hands_protect_area = hands_protect_area & \
213
- (part_mask_of(['Left-arm', 'Right-arm', 'Left-leg', 'Right-leg'], schp_atr_mask, ATR_MAPPING) | \
214
- part_mask_of(['Left-arm', 'Right-arm', 'Left-leg', 'Right-leg'], schp_lip_mask, LIP_MAPPING))
215
- face_protect_area = part_mask_of('Face', schp_lip_mask, LIP_MAPPING)
216
-
217
- strong_protect_area = hands_protect_area | face_protect_area
218
-
219
- # Weak Protect Area (Hair, Irrelevant Clothes, Body Parts)
220
- body_protect_area = part_mask_of(PROTECT_BODY_PARTS[part], schp_lip_mask, LIP_MAPPING) | part_mask_of(PROTECT_BODY_PARTS[part], schp_atr_mask, ATR_MAPPING)
221
- hair_protect_area = part_mask_of(['Hair'], schp_lip_mask, LIP_MAPPING) | \
222
- part_mask_of(['Hair'], schp_atr_mask, ATR_MAPPING)
223
- cloth_protect_area = part_mask_of(PROTECT_CLOTH_PARTS[part]['LIP'], schp_lip_mask, LIP_MAPPING) | \
224
- part_mask_of(PROTECT_CLOTH_PARTS[part]['ATR'], schp_atr_mask, ATR_MAPPING)
225
- accessory_protect_area = part_mask_of((accessory_parts := ['Hat', 'Glove', 'Sunglasses', 'Bag', 'Left-shoe', 'Right-shoe', 'Scarf', 'Socks']), schp_lip_mask, LIP_MAPPING) | \
226
- part_mask_of(accessory_parts, schp_atr_mask, ATR_MAPPING)
227
- weak_protect_area = body_protect_area | cloth_protect_area | hair_protect_area | strong_protect_area | accessory_protect_area
228
-
229
- # Mask Area
230
- strong_mask_area = part_mask_of(MASK_CLOTH_PARTS[part], schp_lip_mask, LIP_MAPPING) | \
231
- part_mask_of(MASK_CLOTH_PARTS[part], schp_atr_mask, ATR_MAPPING)
232
- background_area = part_mask_of(['Background'], schp_lip_mask, LIP_MAPPING) & part_mask_of(['Background'], schp_atr_mask, ATR_MAPPING)
233
- mask_dense_area = part_mask_of(MASK_DENSE_PARTS[part], densepose_mask, DENSE_INDEX_MAP)
234
- mask_dense_area = cv2.resize(mask_dense_area.astype(np.uint8), None, fx=0.25, fy=0.25, interpolation=cv2.INTER_NEAREST)
235
- mask_dense_area = cv2.dilate(mask_dense_area, dilate_kernel, iterations=2)
236
- mask_dense_area = cv2.resize(mask_dense_area.astype(np.uint8), None, fx=4, fy=4, interpolation=cv2.INTER_NEAREST)
237
-
238
-
239
- mask_area = (np.ones_like(densepose_mask) & (~weak_protect_area) & (~background_area)) | mask_dense_area
240
-
241
- mask_area = hull_mask(mask_area * 255) // 255 # Convex Hull to expand the mask area
242
- mask_area = mask_area & (~weak_protect_area)
243
- mask_area = cv2.GaussianBlur(mask_area * 255, (kernal_size, kernal_size), 0)
244
- mask_area[mask_area < 25] = 0
245
- mask_area[mask_area >= 25] = 1
246
- mask_area = (mask_area | strong_mask_area) & (~strong_protect_area)
247
- mask_area = cv2.dilate(mask_area, dilate_kernel, iterations=1)
248
-
249
- return Image.fromarray(mask_area * 255)
250
-
251
- def __call__(
252
- self,
253
- image: Union[str, Image.Image],
254
- mask_type: str = "upper",
255
- ):
256
- assert mask_type in ['upper', 'lower', 'overall', 'inner', 'outer'], f"mask_type should be one of ['upper', 'lower', 'overall', 'inner', 'outer'], but got {mask_type}"
257
- preprocess_results = self.preprocess_image(image)
258
- mask = self.cloth_agnostic_mask(
259
- preprocess_results['densepose'],
260
- preprocess_results['schp_lip'],
261
- preprocess_results['schp_atr'],
262
- part=mask_type,
263
- )
264
- return {
265
- 'mask': mask,
266
- 'densepose': preprocess_results['densepose'],
267
- 'schp_lip': preprocess_results['schp_lip'],
268
- 'schp_atr': preprocess_results['schp_atr']
269
- }
270
-
271
-
272
- if __name__ == '__main__':
273
- pass