Vaibhavnaik12 commited on
Commit
34bdd2e
·
verified ·
1 Parent(s): b73a9e0

Upload model_cloth_masker.py

Browse files
Files changed (1) hide show
  1. model/model_cloth_masker.py +273 -0
model/model_cloth_masker.py ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from PIL import Image
3
+ from typing import Union
4
+ import numpy as np
5
+ import cv2
6
+ from diffusers.image_processor import VaeImageProcessor
7
+ import torch
8
+
9
+ from model.SCHP import SCHP # type: ignore
10
+ from model.DensePose import DensePose # type: ignore
11
+
12
+ DENSE_INDEX_MAP = {
13
+ "background": [0],
14
+ "torso": [1, 2],
15
+ "right hand": [3],
16
+ "left hand": [4],
17
+ "right foot": [5],
18
+ "left foot": [6],
19
+ "right thigh": [7, 9],
20
+ "left thigh": [8, 10],
21
+ "right leg": [11, 13],
22
+ "left leg": [12, 14],
23
+ "left big arm": [15, 17],
24
+ "right big arm": [16, 18],
25
+ "left forearm": [19, 21],
26
+ "right forearm": [20, 22],
27
+ "face": [23, 24],
28
+ "thighs": [7, 8, 9, 10],
29
+ "legs": [11, 12, 13, 14],
30
+ "hands": [3, 4],
31
+ "feet": [5, 6],
32
+ "big arms": [15, 16, 17, 18],
33
+ "forearms": [19, 20, 21, 22],
34
+ }
35
+
36
+ ATR_MAPPING = {
37
+ 'Background': 0, 'Hat': 1, 'Hair': 2, 'Sunglasses': 3,
38
+ 'Upper-clothes': 4, 'Skirt': 5, 'Pants': 6, 'Dress': 7,
39
+ 'Belt': 8, 'Left-shoe': 9, 'Right-shoe': 10, 'Face': 11,
40
+ 'Left-leg': 12, 'Right-leg': 13, 'Left-arm': 14, 'Right-arm': 15,
41
+ 'Bag': 16, 'Scarf': 17
42
+ }
43
+
44
+ LIP_MAPPING = {
45
+ 'Background': 0, 'Hat': 1, 'Hair': 2, 'Glove': 3,
46
+ 'Sunglasses': 4, 'Upper-clothes': 5, 'Dress': 6, 'Coat': 7,
47
+ 'Socks': 8, 'Pants': 9, 'Jumpsuits': 10, 'Scarf': 11,
48
+ 'Skirt': 12, 'Face': 13, 'Left-arm': 14, 'Right-arm': 15,
49
+ 'Left-leg': 16, 'Right-leg': 17, 'Left-shoe': 18, 'Right-shoe': 19
50
+ }
51
+
52
+ PROTECT_BODY_PARTS = {
53
+ 'upper': ['Left-leg', 'Right-leg'],
54
+ 'lower': ['Right-arm', 'Left-arm', 'Face'],
55
+ 'overall': [],
56
+ 'inner': ['Left-leg', 'Right-leg'],
57
+ 'outer': ['Left-leg', 'Right-leg'],
58
+ }
59
+ PROTECT_CLOTH_PARTS = {
60
+ 'upper': {
61
+ 'ATR': ['Skirt', 'Pants'],
62
+ 'LIP': ['Skirt', 'Pants']
63
+ },
64
+ 'lower': {
65
+ 'ATR': ['Upper-clothes'],
66
+ 'LIP': ['Upper-clothes', 'Coat']
67
+ },
68
+ 'overall': {
69
+ 'ATR': [],
70
+ 'LIP': []
71
+ },
72
+ 'inner': {
73
+ 'ATR': ['Dress', 'Coat', 'Skirt', 'Pants'],
74
+ 'LIP': ['Dress', 'Coat', 'Skirt', 'Pants', 'Jumpsuits']
75
+ },
76
+ 'outer': {
77
+ 'ATR': ['Dress', 'Pants', 'Skirt'],
78
+ 'LIP': ['Upper-clothes', 'Dress', 'Pants', 'Skirt', 'Jumpsuits']
79
+ }
80
+ }
81
+ MASK_CLOTH_PARTS = {
82
+ 'upper': ['Upper-clothes', 'Coat', 'Dress', 'Jumpsuits'],
83
+ 'lower': ['Pants', 'Skirt', 'Dress', 'Jumpsuits'],
84
+ 'overall': ['Upper-clothes', 'Dress', 'Pants', 'Skirt', 'Coat', 'Jumpsuits'],
85
+ 'inner': ['Upper-clothes'],
86
+ 'outer': ['Coat',]
87
+ }
88
+ MASK_DENSE_PARTS = {
89
+ 'upper': ['torso', 'big arms', 'forearms'],
90
+ 'lower': ['thighs', 'legs'],
91
+ 'overall': ['torso', 'thighs', 'legs', 'big arms', 'forearms'],
92
+ 'inner': ['torso'],
93
+ 'outer': ['torso', 'big arms', 'forearms']
94
+ }
95
+
96
+ schp_public_protect_parts = ['Hat', 'Hair', 'Sunglasses', 'Left-shoe', 'Right-shoe', 'Bag', 'Glove', 'Scarf']
97
+ schp_protect_parts = {
98
+ 'upper': ['Left-leg', 'Right-leg', 'Skirt', 'Pants', 'Jumpsuits'],
99
+ 'lower': ['Left-arm', 'Right-arm', 'Upper-clothes', 'Coat'],
100
+ 'overall': [],
101
+ 'inner': ['Left-leg', 'Right-leg', 'Skirt', 'Pants', 'Jumpsuits', 'Coat'],
102
+ 'outer': ['Left-leg', 'Right-leg', 'Skirt', 'Pants', 'Jumpsuits', 'Upper-clothes']
103
+ }
104
+ schp_mask_parts = {
105
+ 'upper': ['Upper-clothes', 'Dress', 'Coat', 'Jumpsuits'],
106
+ 'lower': ['Pants', 'Skirt', 'Dress', 'Jumpsuits', 'socks'],
107
+ 'overall': ['Upper-clothes', 'Dress', 'Pants', 'Skirt', 'Coat', 'Jumpsuits', 'socks'],
108
+ 'inner': ['Upper-clothes'],
109
+ 'outer': ['Coat',]
110
+ }
111
+
112
+ dense_mask_parts = {
113
+ 'upper': ['torso', 'big arms', 'forearms'],
114
+ 'lower': ['thighs', 'legs'],
115
+ 'overall': ['torso', 'thighs', 'legs', 'big arms', 'forearms'],
116
+ 'inner': ['torso'],
117
+ 'outer': ['torso', 'big arms', 'forearms']
118
+ }
119
+
120
+ def vis_mask(image, mask):
121
+ image = np.array(image).astype(np.uint8)
122
+ mask = np.array(mask).astype(np.uint8)
123
+ mask[mask > 127] = 255
124
+ mask[mask <= 127] = 0
125
+ mask = np.expand_dims(mask, axis=-1)
126
+ mask = np.repeat(mask, 3, axis=-1)
127
+ mask = mask / 255
128
+ return Image.fromarray((image * (1 - mask)).astype(np.uint8))
129
+
130
+ def part_mask_of(part: Union[str, list],
131
+ parse: np.ndarray, mapping: dict):
132
+ if isinstance(part, str):
133
+ part = [part]
134
+ mask = np.zeros_like(parse)
135
+ for _ in part:
136
+ if _ not in mapping:
137
+ continue
138
+ if isinstance(mapping[_], list):
139
+ for i in mapping[_]:
140
+ mask += (parse == i)
141
+ else:
142
+ mask += (parse == mapping[_])
143
+ return mask
144
+
145
+ def hull_mask(mask_area: np.ndarray):
146
+ ret, binary = cv2.threshold(mask_area, 127, 255, cv2.THRESH_BINARY)
147
+ contours, hierarchy = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
148
+ hull_mask = np.zeros_like(mask_area)
149
+ for c in contours:
150
+ hull = cv2.convexHull(c)
151
+ hull_mask = cv2.fillPoly(np.zeros_like(mask_area), [hull], 255) | hull_mask
152
+ return hull_mask
153
+
154
+
155
+ class AutoMasker:
156
+ def __init__(
157
+ self,
158
+ densepose_ckpt='./Models/DensePose',
159
+ schp_ckpt='./Models/SCHP',
160
+ device='cuda'):
161
+ np.random.seed(0)
162
+ torch.manual_seed(0)
163
+ torch.cuda.manual_seed(0)
164
+
165
+ self.densepose_processor = DensePose(densepose_ckpt, device)
166
+ self.schp_processor_atr = SCHP(ckpt_path=os.path.join(schp_ckpt, 'exp-schp-201908301523-atr.pth'), device=device)
167
+ self.schp_processor_lip = SCHP(ckpt_path=os.path.join(schp_ckpt, 'exp-schp-201908261155-lip.pth'), device=device)
168
+
169
+ self.mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
170
+
171
+ def process_densepose(self, image_or_path):
172
+ return self.densepose_processor(image_or_path, resize=1024)
173
+
174
+ def process_schp_lip(self, image_or_path):
175
+ return self.schp_processor_lip(image_or_path)
176
+
177
+ def process_schp_atr(self, image_or_path):
178
+ return self.schp_processor_atr(image_or_path)
179
+
180
+ def preprocess_image(self, image_or_path):
181
+ return {
182
+ 'densepose': self.densepose_processor(image_or_path, resize=1024),
183
+ 'schp_atr': self.schp_processor_atr(image_or_path),
184
+ 'schp_lip': self.schp_processor_lip(image_or_path)
185
+ }
186
+
187
+ @staticmethod
188
+ def cloth_agnostic_mask(
189
+ densepose_mask: Image.Image,
190
+ schp_lip_mask: Image.Image,
191
+ schp_atr_mask: Image.Image,
192
+ part: str='overall',
193
+ **kwargs
194
+ ):
195
+ assert part in ['upper', 'lower', 'overall', 'inner', 'outer'], f"part should be one of ['upper', 'lower', 'overall', 'inner', 'outer'], but got {part}"
196
+ w, h = densepose_mask.size
197
+
198
+ dilate_kernel = max(w, h) // 250
199
+ dilate_kernel = dilate_kernel if dilate_kernel % 2 == 1 else dilate_kernel + 1
200
+ dilate_kernel = np.ones((dilate_kernel, dilate_kernel), np.uint8)
201
+
202
+ kernal_size = max(w, h) // 15
203
+ kernal_size = kernal_size if kernal_size % 2 == 1 else kernal_size + 1
204
+
205
+ densepose_mask = np.array(densepose_mask)
206
+ schp_lip_mask = np.array(schp_lip_mask)
207
+ schp_atr_mask = np.array(schp_atr_mask)
208
+
209
+ # Strong Protect Area (Hands, Face, Accessory, Feet)
210
+ hands_protect_area = part_mask_of(['hands', 'feet'], densepose_mask, DENSE_INDEX_MAP)
211
+ hands_protect_area = cv2.dilate(hands_protect_area, dilate_kernel, iterations=1)
212
+ hands_protect_area = hands_protect_area & \
213
+ (part_mask_of(['Left-arm', 'Right-arm', 'Left-leg', 'Right-leg'], schp_atr_mask, ATR_MAPPING) | \
214
+ part_mask_of(['Left-arm', 'Right-arm', 'Left-leg', 'Right-leg'], schp_lip_mask, LIP_MAPPING))
215
+ face_protect_area = part_mask_of('Face', schp_lip_mask, LIP_MAPPING)
216
+
217
+ strong_protect_area = hands_protect_area | face_protect_area
218
+
219
+ # Weak Protect Area (Hair, Irrelevant Clothes, Body Parts)
220
+ body_protect_area = part_mask_of(PROTECT_BODY_PARTS[part], schp_lip_mask, LIP_MAPPING) | part_mask_of(PROTECT_BODY_PARTS[part], schp_atr_mask, ATR_MAPPING)
221
+ hair_protect_area = part_mask_of(['Hair'], schp_lip_mask, LIP_MAPPING) | \
222
+ part_mask_of(['Hair'], schp_atr_mask, ATR_MAPPING)
223
+ cloth_protect_area = part_mask_of(PROTECT_CLOTH_PARTS[part]['LIP'], schp_lip_mask, LIP_MAPPING) | \
224
+ part_mask_of(PROTECT_CLOTH_PARTS[part]['ATR'], schp_atr_mask, ATR_MAPPING)
225
+ accessory_protect_area = part_mask_of((accessory_parts := ['Hat', 'Glove', 'Sunglasses', 'Bag', 'Left-shoe', 'Right-shoe', 'Scarf', 'Socks']), schp_lip_mask, LIP_MAPPING) | \
226
+ part_mask_of(accessory_parts, schp_atr_mask, ATR_MAPPING)
227
+ weak_protect_area = body_protect_area | cloth_protect_area | hair_protect_area | strong_protect_area | accessory_protect_area
228
+
229
+ # Mask Area
230
+ strong_mask_area = part_mask_of(MASK_CLOTH_PARTS[part], schp_lip_mask, LIP_MAPPING) | \
231
+ part_mask_of(MASK_CLOTH_PARTS[part], schp_atr_mask, ATR_MAPPING)
232
+ background_area = part_mask_of(['Background'], schp_lip_mask, LIP_MAPPING) & part_mask_of(['Background'], schp_atr_mask, ATR_MAPPING)
233
+ mask_dense_area = part_mask_of(MASK_DENSE_PARTS[part], densepose_mask, DENSE_INDEX_MAP)
234
+ mask_dense_area = cv2.resize(mask_dense_area.astype(np.uint8), None, fx=0.25, fy=0.25, interpolation=cv2.INTER_NEAREST)
235
+ mask_dense_area = cv2.dilate(mask_dense_area, dilate_kernel, iterations=2)
236
+ mask_dense_area = cv2.resize(mask_dense_area.astype(np.uint8), None, fx=4, fy=4, interpolation=cv2.INTER_NEAREST)
237
+
238
+
239
+ mask_area = (np.ones_like(densepose_mask) & (~weak_protect_area) & (~background_area)) | mask_dense_area
240
+
241
+ mask_area = hull_mask(mask_area * 255) // 255 # Convex Hull to expand the mask area
242
+ mask_area = mask_area & (~weak_protect_area)
243
+ mask_area = cv2.GaussianBlur(mask_area * 255, (kernal_size, kernal_size), 0)
244
+ mask_area[mask_area < 25] = 0
245
+ mask_area[mask_area >= 25] = 1
246
+ mask_area = (mask_area | strong_mask_area) & (~strong_protect_area)
247
+ mask_area = cv2.dilate(mask_area, dilate_kernel, iterations=1)
248
+
249
+ return Image.fromarray(mask_area * 255)
250
+
251
+ def __call__(
252
+ self,
253
+ image: Union[str, Image.Image],
254
+ mask_type: str = "upper",
255
+ ):
256
+ assert mask_type in ['upper', 'lower', 'overall', 'inner', 'outer'], f"mask_type should be one of ['upper', 'lower', 'overall', 'inner', 'outer'], but got {mask_type}"
257
+ preprocess_results = self.preprocess_image(image)
258
+ mask = self.cloth_agnostic_mask(
259
+ preprocess_results['densepose'],
260
+ preprocess_results['schp_lip'],
261
+ preprocess_results['schp_atr'],
262
+ part=mask_type,
263
+ )
264
+ return {
265
+ 'mask': mask,
266
+ 'densepose': preprocess_results['densepose'],
267
+ 'schp_lip': preprocess_results['schp_lip'],
268
+ 'schp_atr': preprocess_results['schp_atr']
269
+ }
270
+
271
+
272
+ if __name__ == '__main__':
273
+ pass