Vahe commited on
Commit
c5e85a4
·
1 Parent(s): d5001fd

wav2lip model added

Browse files
Wav2Lip/audio.py ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import librosa
2
+ import librosa.filters
3
+ import numpy as np
4
+ # import tensorflow as tf
5
+ from scipy import signal
6
+ from scipy.io import wavfile
7
+ # from hparams import hparams as hp
8
+
9
+ class HParams:
10
+ def __init__(self, **kwargs):
11
+ self.data = {}
12
+
13
+ for key, value in kwargs.items():
14
+ self.data[key] = value
15
+
16
+ def __getattr__(self, key):
17
+ if key not in self.data:
18
+ raise AttributeError("'HParams' object has no attribute %s" % key)
19
+ return self.data[key]
20
+
21
+ def set_hparam(self, key, value):
22
+ self.data[key] = value
23
+
24
+
25
+ # Default hyperparameters
26
+ hp = HParams(
27
+ num_mels=80, # Number of mel-spectrogram channels and local conditioning dimensionality
28
+ # network
29
+ rescale=True, # Whether to rescale audio prior to preprocessing
30
+ rescaling_max=0.9, # Rescaling value
31
+
32
+ # Use LWS (https://github.com/Jonathan-LeRoux/lws) for STFT and phase reconstruction
33
+ # It"s preferred to set True to use with https://github.com/r9y9/wavenet_vocoder
34
+ # Does not work if n_ffit is not multiple of hop_size!!
35
+ use_lws=False,
36
+
37
+ n_fft=800, # Extra window size is filled with 0 paddings to match this parameter
38
+ hop_size=200, # For 16000Hz, 200 = 12.5 ms (0.0125 * sample_rate)
39
+ win_size=800, # For 16000Hz, 800 = 50 ms (If None, win_size = n_fft) (0.05 * sample_rate)
40
+ sample_rate=16000, # 16000Hz (corresponding to librispeech) (sox --i <filename>)
41
+
42
+ frame_shift_ms=None, # Can replace hop_size parameter. (Recommended: 12.5)
43
+
44
+ # Mel and Linear spectrograms normalization/scaling and clipping
45
+ signal_normalization=True,
46
+ # Whether to normalize mel spectrograms to some predefined range (following below parameters)
47
+ allow_clipping_in_normalization=True, # Only relevant if mel_normalization = True
48
+ symmetric_mels=True,
49
+ # Whether to scale the data to be symmetric around 0. (Also multiplies the output range by 2,
50
+ # faster and cleaner convergence)
51
+ max_abs_value=4.,
52
+ # max absolute value of data. If symmetric, data will be [-max, max] else [0, max] (Must not
53
+ # be too big to avoid gradient explosion,
54
+ # not too small for fast convergence)
55
+ # Contribution by @begeekmyfriend
56
+ # Spectrogram Pre-Emphasis (Lfilter: Reduce spectrogram noise and helps model certitude
57
+ # levels. Also allows for better G&L phase reconstruction)
58
+ preemphasize=True, # whether to apply filter
59
+ preemphasis=0.97, # filter coefficient.
60
+
61
+ # Limits
62
+ min_level_db=-100,
63
+ ref_level_db=20,
64
+ fmin=55,
65
+ # Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To
66
+ # test depending on dataset. Pitch info: male~[65, 260], female~[100, 525])
67
+ fmax=7600, # To be increased/reduced depending on data.
68
+
69
+ ###################### Our training parameters #################################
70
+ img_size=96,
71
+ fps=25,
72
+
73
+ batch_size=16,
74
+ initial_learning_rate=1e-4,
75
+ nepochs=200000000000000000, ### ctrl + c, stop whenever eval loss is consistently greater than train loss for ~10 epochs
76
+ num_workers=16,
77
+ checkpoint_interval=3000,
78
+ eval_interval=3000,
79
+ save_optimizer_state=True,
80
+
81
+ syncnet_wt=0.0, # is initially zero, will be set automatically to 0.03 later. Leads to faster convergence.
82
+ syncnet_batch_size=64,
83
+ syncnet_lr=1e-4,
84
+ syncnet_eval_interval=10000,
85
+ syncnet_checkpoint_interval=10000,
86
+
87
+ disc_wt=0.07,
88
+ disc_initial_learning_rate=1e-4,
89
+ )
90
+
91
+ def load_wav(path, sr):
92
+ return librosa.core.load(path, sr=sr)[0]
93
+
94
+ def save_wav(wav, path, sr):
95
+ wav *= 32767 / max(0.01, np.max(np.abs(wav)))
96
+ #proposed by @dsmiller
97
+ wavfile.write(path, sr, wav.astype(np.int16))
98
+
99
+ def save_wavenet_wav(wav, path, sr):
100
+ librosa.output.write_wav(path, wav, sr=sr)
101
+
102
+ def preemphasis(wav, k, preemphasize=True):
103
+ if preemphasize:
104
+ return signal.lfilter([1, -k], [1], wav)
105
+ return wav
106
+
107
+ def inv_preemphasis(wav, k, inv_preemphasize=True):
108
+ if inv_preemphasize:
109
+ return signal.lfilter([1], [1, -k], wav)
110
+ return wav
111
+
112
+ def get_hop_size():
113
+ hop_size = hp.hop_size
114
+ if hop_size is None:
115
+ assert hp.frame_shift_ms is not None
116
+ hop_size = int(hp.frame_shift_ms / 1000 * hp.sample_rate)
117
+ return hop_size
118
+
119
+ def linearspectrogram(wav):
120
+ D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
121
+ S = _amp_to_db(np.abs(D)) - hp.ref_level_db
122
+
123
+ if hp.signal_normalization:
124
+ return _normalize(S)
125
+ return S
126
+
127
+ def melspectrogram(wav):
128
+ D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
129
+ S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp.ref_level_db
130
+
131
+ if hp.signal_normalization:
132
+ return _normalize(S)
133
+ return S
134
+
135
+ def _lws_processor():
136
+ import lws
137
+ return lws.lws(hp.n_fft, get_hop_size(), fftsize=hp.win_size, mode="speech")
138
+
139
+ def _stft(y):
140
+ if hp.use_lws:
141
+ return _lws_processor(hp).stft(y).T
142
+ else:
143
+ return librosa.stft(y=y, n_fft=hp.n_fft, hop_length=get_hop_size(), win_length=hp.win_size)
144
+
145
+ ##########################################################
146
+ #Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
147
+ def num_frames(length, fsize, fshift):
148
+ """Compute number of time frames of spectrogram
149
+ """
150
+ pad = (fsize - fshift)
151
+ if length % fshift == 0:
152
+ M = (length + pad * 2 - fsize) // fshift + 1
153
+ else:
154
+ M = (length + pad * 2 - fsize) // fshift + 2
155
+ return M
156
+
157
+
158
+ def pad_lr(x, fsize, fshift):
159
+ """Compute left and right padding
160
+ """
161
+ M = num_frames(len(x), fsize, fshift)
162
+ pad = (fsize - fshift)
163
+ T = len(x) + 2 * pad
164
+ r = (M - 1) * fshift + fsize - T
165
+ return pad, pad + r
166
+ ##########################################################
167
+ #Librosa correct padding
168
+ def librosa_pad_lr(x, fsize, fshift):
169
+ return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]
170
+
171
+ # Conversions
172
+ _mel_basis = None
173
+
174
+ def _linear_to_mel(spectogram):
175
+ global _mel_basis
176
+ if _mel_basis is None:
177
+ _mel_basis = _build_mel_basis()
178
+ return np.dot(_mel_basis, spectogram)
179
+
180
+ def _build_mel_basis():
181
+ assert hp.fmax <= hp.sample_rate // 2
182
+ # return librosa.filters.mel(hp.sample_rate, hp.n_fft, n_mels=hp.num_mels,
183
+ # fmin=hp.fmin, fmax=hp.fmax)
184
+ return librosa.filters.mel(sr=hp.sample_rate, n_fft=hp.n_fft)
185
+
186
+ def _amp_to_db(x):
187
+ min_level = np.exp(hp.min_level_db / 20 * np.log(10))
188
+ return 20 * np.log10(np.maximum(min_level, x))
189
+
190
+ def _db_to_amp(x):
191
+ return np.power(10.0, (x) * 0.05)
192
+
193
+ def _normalize(S):
194
+ if hp.allow_clipping_in_normalization:
195
+ if hp.symmetric_mels:
196
+ return np.clip((2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value,
197
+ -hp.max_abs_value, hp.max_abs_value)
198
+ else:
199
+ return np.clip(hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)), 0, hp.max_abs_value)
200
+
201
+ assert S.max() <= 0 and S.min() - hp.min_level_db >= 0
202
+ if hp.symmetric_mels:
203
+ return (2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value
204
+ else:
205
+ return hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db))
206
+
207
+ def _denormalize(D):
208
+ if hp.allow_clipping_in_normalization:
209
+ if hp.symmetric_mels:
210
+ return (((np.clip(D, -hp.max_abs_value,
211
+ hp.max_abs_value) + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value))
212
+ + hp.min_level_db)
213
+ else:
214
+ return ((np.clip(D, 0, hp.max_abs_value) * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)
215
+
216
+ if hp.symmetric_mels:
217
+ return (((D + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) + hp.min_level_db)
218
+ else:
219
+ return ((D * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)
Wav2Lip/face_detection/README.md ADDED
@@ -0,0 +1 @@
 
 
1
+ The code for Face Detection in this folder has been taken from the wonderful [face_alignment](https://github.com/1adrianb/face-alignment) repository. This has been modified to take batches of faces at a time.
Wav2Lip/face_detection/__init__.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ __author__ = """Adrian Bulat"""
4
+ __email__ = '[email protected]'
5
+ __version__ = '1.0.1'
6
+
7
+ from .api import FaceAlignment, LandmarksType, NetworkSize
Wav2Lip/face_detection/api.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import print_function
2
+ import os
3
+ import torch
4
+ from torch.utils.model_zoo import load_url
5
+ from enum import Enum
6
+ import numpy as np
7
+ import cv2
8
+ try:
9
+ import urllib.request as request_file
10
+ except BaseException:
11
+ import urllib as request_file
12
+
13
+ from .models import FAN, ResNetDepth
14
+ from .utils import *
15
+
16
+
17
+ class LandmarksType(Enum):
18
+ """Enum class defining the type of landmarks to detect.
19
+
20
+ ``_2D`` - the detected points ``(x,y)`` are detected in a 2D space and follow the visible contour of the face
21
+ ``_2halfD`` - this points represent the projection of the 3D points into 3D
22
+ ``_3D`` - detect the points ``(x,y,z)``` in a 3D space
23
+
24
+ """
25
+ _2D = 1
26
+ _2halfD = 2
27
+ _3D = 3
28
+
29
+
30
+ class NetworkSize(Enum):
31
+ # TINY = 1
32
+ # SMALL = 2
33
+ # MEDIUM = 3
34
+ LARGE = 4
35
+
36
+ def __new__(cls, value):
37
+ member = object.__new__(cls)
38
+ member._value_ = value
39
+ return member
40
+
41
+ def __int__(self):
42
+ return self.value
43
+
44
+ ROOT = os.path.dirname(os.path.abspath(__file__))
45
+
46
+ class FaceAlignment:
47
+ def __init__(self, landmarks_type, network_size=NetworkSize.LARGE,
48
+ device='cuda', flip_input=False, face_detector='sfd', verbose=False):
49
+ self.device = device
50
+ self.flip_input = flip_input
51
+ self.landmarks_type = landmarks_type
52
+ self.verbose = verbose
53
+
54
+ network_size = int(network_size)
55
+
56
+ if 'cuda' in device:
57
+ torch.backends.cudnn.benchmark = True
58
+
59
+ # Get the face detector
60
+ face_detector_module = __import__('Wav2Lip.face_detection.detection.' + face_detector,
61
+ globals(), locals(), [face_detector], 0)
62
+ self.face_detector = face_detector_module.FaceDetector(device=device, verbose=verbose)
63
+
64
+ def get_detections_for_batch(self, images):
65
+ images = images[..., ::-1]
66
+ detected_faces = self.face_detector.detect_from_batch(images.copy())
67
+ results = []
68
+
69
+ for i, d in enumerate(detected_faces):
70
+ if len(d) == 0:
71
+ results.append(None)
72
+ continue
73
+ d = d[0]
74
+ d = np.clip(d, 0, None)
75
+
76
+ x1, y1, x2, y2 = map(int, d[:-1])
77
+ results.append((x1, y1, x2, y2))
78
+
79
+ return results
Wav2Lip/face_detection/detection/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .core import FaceDetector
Wav2Lip/face_detection/detection/core.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import glob
3
+ from tqdm import tqdm
4
+ import numpy as np
5
+ import torch
6
+ import cv2
7
+
8
+
9
+ class FaceDetector(object):
10
+ """An abstract class representing a face detector.
11
+
12
+ Any other face detection implementation must subclass it. All subclasses
13
+ must implement ``detect_from_image``, that return a list of detected
14
+ bounding boxes. Optionally, for speed considerations detect from path is
15
+ recommended.
16
+ """
17
+
18
+ def __init__(self, device, verbose):
19
+ self.device = device
20
+ self.verbose = verbose
21
+
22
+ if verbose:
23
+ if 'cpu' in device:
24
+ logger = logging.getLogger(__name__)
25
+ logger.warning("Detection running on CPU, this may be potentially slow.")
26
+
27
+ if 'cpu' not in device and 'cuda' not in device:
28
+ if verbose:
29
+ logger.error("Expected values for device are: {cpu, cuda} but got: %s", device)
30
+ raise ValueError
31
+
32
+ def detect_from_image(self, tensor_or_path):
33
+ """Detects faces in a given image.
34
+
35
+ This function detects the faces present in a provided BGR(usually)
36
+ image. The input can be either the image itself or the path to it.
37
+
38
+ Arguments:
39
+ tensor_or_path {numpy.ndarray, torch.tensor or string} -- the path
40
+ to an image or the image itself.
41
+
42
+ Example::
43
+
44
+ >>> path_to_image = 'data/image_01.jpg'
45
+ ... detected_faces = detect_from_image(path_to_image)
46
+ [A list of bounding boxes (x1, y1, x2, y2)]
47
+ >>> image = cv2.imread(path_to_image)
48
+ ... detected_faces = detect_from_image(image)
49
+ [A list of bounding boxes (x1, y1, x2, y2)]
50
+
51
+ """
52
+ raise NotImplementedError
53
+
54
+ def detect_from_directory(self, path, extensions=['.jpg', '.png'], recursive=False, show_progress_bar=True):
55
+ """Detects faces from all the images present in a given directory.
56
+
57
+ Arguments:
58
+ path {string} -- a string containing a path that points to the folder containing the images
59
+
60
+ Keyword Arguments:
61
+ extensions {list} -- list of string containing the extensions to be
62
+ consider in the following format: ``.extension_name`` (default:
63
+ {['.jpg', '.png']}) recursive {bool} -- option wherever to scan the
64
+ folder recursively (default: {False}) show_progress_bar {bool} --
65
+ display a progressbar (default: {True})
66
+
67
+ Example:
68
+ >>> directory = 'data'
69
+ ... detected_faces = detect_from_directory(directory)
70
+ {A dictionary of [lists containing bounding boxes(x1, y1, x2, y2)]}
71
+
72
+ """
73
+ if self.verbose:
74
+ logger = logging.getLogger(__name__)
75
+
76
+ if len(extensions) == 0:
77
+ if self.verbose:
78
+ logger.error("Expected at list one extension, but none was received.")
79
+ raise ValueError
80
+
81
+ if self.verbose:
82
+ logger.info("Constructing the list of images.")
83
+ additional_pattern = '/**/*' if recursive else '/*'
84
+ files = []
85
+ for extension in extensions:
86
+ files.extend(glob.glob(path + additional_pattern + extension, recursive=recursive))
87
+
88
+ if self.verbose:
89
+ logger.info("Finished searching for images. %s images found", len(files))
90
+ logger.info("Preparing to run the detection.")
91
+
92
+ predictions = {}
93
+ for image_path in tqdm(files, disable=not show_progress_bar):
94
+ if self.verbose:
95
+ logger.info("Running the face detector on image: %s", image_path)
96
+ predictions[image_path] = self.detect_from_image(image_path)
97
+
98
+ if self.verbose:
99
+ logger.info("The detector was successfully run on all %s images", len(files))
100
+
101
+ return predictions
102
+
103
+ @property
104
+ def reference_scale(self):
105
+ raise NotImplementedError
106
+
107
+ @property
108
+ def reference_x_shift(self):
109
+ raise NotImplementedError
110
+
111
+ @property
112
+ def reference_y_shift(self):
113
+ raise NotImplementedError
114
+
115
+ @staticmethod
116
+ def tensor_or_path_to_ndarray(tensor_or_path, rgb=True):
117
+ """Convert path (represented as a string) or torch.tensor to a numpy.ndarray
118
+
119
+ Arguments:
120
+ tensor_or_path {numpy.ndarray, torch.tensor or string} -- path to the image, or the image itself
121
+ """
122
+ if isinstance(tensor_or_path, str):
123
+ return cv2.imread(tensor_or_path) if not rgb else cv2.imread(tensor_or_path)[..., ::-1]
124
+ elif torch.is_tensor(tensor_or_path):
125
+ # Call cpu in case its coming from cuda
126
+ return tensor_or_path.cpu().numpy()[..., ::-1].copy() if not rgb else tensor_or_path.cpu().numpy()
127
+ elif isinstance(tensor_or_path, np.ndarray):
128
+ return tensor_or_path[..., ::-1].copy() if not rgb else tensor_or_path
129
+ else:
130
+ raise TypeError
Wav2Lip/face_detection/detection/sfd/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .sfd_detector import SFDDetector as FaceDetector
Wav2Lip/face_detection/detection/sfd/bbox.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import print_function
2
+ import os
3
+ import sys
4
+ import cv2
5
+ import random
6
+ import datetime
7
+ import time
8
+ import math
9
+ import argparse
10
+ import numpy as np
11
+ import torch
12
+
13
+ try:
14
+ from iou import IOU
15
+ except BaseException:
16
+ # IOU cython speedup 10x
17
+ def IOU(ax1, ay1, ax2, ay2, bx1, by1, bx2, by2):
18
+ sa = abs((ax2 - ax1) * (ay2 - ay1))
19
+ sb = abs((bx2 - bx1) * (by2 - by1))
20
+ x1, y1 = max(ax1, bx1), max(ay1, by1)
21
+ x2, y2 = min(ax2, bx2), min(ay2, by2)
22
+ w = x2 - x1
23
+ h = y2 - y1
24
+ if w < 0 or h < 0:
25
+ return 0.0
26
+ else:
27
+ return 1.0 * w * h / (sa + sb - w * h)
28
+
29
+
30
+ def bboxlog(x1, y1, x2, y2, axc, ayc, aww, ahh):
31
+ xc, yc, ww, hh = (x2 + x1) / 2, (y2 + y1) / 2, x2 - x1, y2 - y1
32
+ dx, dy = (xc - axc) / aww, (yc - ayc) / ahh
33
+ dw, dh = math.log(ww / aww), math.log(hh / ahh)
34
+ return dx, dy, dw, dh
35
+
36
+
37
+ def bboxloginv(dx, dy, dw, dh, axc, ayc, aww, ahh):
38
+ xc, yc = dx * aww + axc, dy * ahh + ayc
39
+ ww, hh = math.exp(dw) * aww, math.exp(dh) * ahh
40
+ x1, x2, y1, y2 = xc - ww / 2, xc + ww / 2, yc - hh / 2, yc + hh / 2
41
+ return x1, y1, x2, y2
42
+
43
+
44
+ def nms(dets, thresh):
45
+ if 0 == len(dets):
46
+ return []
47
+ x1, y1, x2, y2, scores = dets[:, 0], dets[:, 1], dets[:, 2], dets[:, 3], dets[:, 4]
48
+ areas = (x2 - x1 + 1) * (y2 - y1 + 1)
49
+ order = scores.argsort()[::-1]
50
+
51
+ keep = []
52
+ while order.size > 0:
53
+ i = order[0]
54
+ keep.append(i)
55
+ xx1, yy1 = np.maximum(x1[i], x1[order[1:]]), np.maximum(y1[i], y1[order[1:]])
56
+ xx2, yy2 = np.minimum(x2[i], x2[order[1:]]), np.minimum(y2[i], y2[order[1:]])
57
+
58
+ w, h = np.maximum(0.0, xx2 - xx1 + 1), np.maximum(0.0, yy2 - yy1 + 1)
59
+ ovr = w * h / (areas[i] + areas[order[1:]] - w * h)
60
+
61
+ inds = np.where(ovr <= thresh)[0]
62
+ order = order[inds + 1]
63
+
64
+ return keep
65
+
66
+
67
+ def encode(matched, priors, variances):
68
+ """Encode the variances from the priorbox layers into the ground truth boxes
69
+ we have matched (based on jaccard overlap) with the prior boxes.
70
+ Args:
71
+ matched: (tensor) Coords of ground truth for each prior in point-form
72
+ Shape: [num_priors, 4].
73
+ priors: (tensor) Prior boxes in center-offset form
74
+ Shape: [num_priors,4].
75
+ variances: (list[float]) Variances of priorboxes
76
+ Return:
77
+ encoded boxes (tensor), Shape: [num_priors, 4]
78
+ """
79
+
80
+ # dist b/t match center and prior's center
81
+ g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2]
82
+ # encode variance
83
+ g_cxcy /= (variances[0] * priors[:, 2:])
84
+ # match wh / prior wh
85
+ g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
86
+ g_wh = torch.log(g_wh) / variances[1]
87
+ # return target for smooth_l1_loss
88
+ return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4]
89
+
90
+
91
+ def decode(loc, priors, variances):
92
+ """Decode locations from predictions using priors to undo
93
+ the encoding we did for offset regression at train time.
94
+ Args:
95
+ loc (tensor): location predictions for loc layers,
96
+ Shape: [num_priors,4]
97
+ priors (tensor): Prior boxes in center-offset form.
98
+ Shape: [num_priors,4].
99
+ variances: (list[float]) Variances of priorboxes
100
+ Return:
101
+ decoded bounding box predictions
102
+ """
103
+
104
+ boxes = torch.cat((
105
+ priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
106
+ priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
107
+ boxes[:, :2] -= boxes[:, 2:] / 2
108
+ boxes[:, 2:] += boxes[:, :2]
109
+ return boxes
110
+
111
+ def batch_decode(loc, priors, variances):
112
+ """Decode locations from predictions using priors to undo
113
+ the encoding we did for offset regression at train time.
114
+ Args:
115
+ loc (tensor): location predictions for loc layers,
116
+ Shape: [num_priors,4]
117
+ priors (tensor): Prior boxes in center-offset form.
118
+ Shape: [num_priors,4].
119
+ variances: (list[float]) Variances of priorboxes
120
+ Return:
121
+ decoded bounding box predictions
122
+ """
123
+
124
+ boxes = torch.cat((
125
+ priors[:, :, :2] + loc[:, :, :2] * variances[0] * priors[:, :, 2:],
126
+ priors[:, :, 2:] * torch.exp(loc[:, :, 2:] * variances[1])), 2)
127
+ boxes[:, :, :2] -= boxes[:, :, 2:] / 2
128
+ boxes[:, :, 2:] += boxes[:, :, :2]
129
+ return boxes
Wav2Lip/face_detection/detection/sfd/detect.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+
4
+ import os
5
+ import sys
6
+ import cv2
7
+ import random
8
+ import datetime
9
+ import math
10
+ import argparse
11
+ import numpy as np
12
+
13
+ import scipy.io as sio
14
+ import zipfile
15
+ from .net_s3fd import s3fd
16
+ from .bbox import *
17
+
18
+
19
+ def detect(net, img, device):
20
+ img = img - np.array([104, 117, 123])
21
+ img = img.transpose(2, 0, 1)
22
+ img = img.reshape((1,) + img.shape)
23
+
24
+ if 'cuda' in device:
25
+ torch.backends.cudnn.benchmark = True
26
+
27
+ img = torch.from_numpy(img).float().to(device)
28
+ BB, CC, HH, WW = img.size()
29
+ with torch.no_grad():
30
+ olist = net(img)
31
+
32
+ bboxlist = []
33
+ for i in range(len(olist) // 2):
34
+ olist[i * 2] = F.softmax(olist[i * 2], dim=1)
35
+ olist = [oelem.data.cpu() for oelem in olist]
36
+ for i in range(len(olist) // 2):
37
+ ocls, oreg = olist[i * 2], olist[i * 2 + 1]
38
+ FB, FC, FH, FW = ocls.size() # feature map size
39
+ stride = 2**(i + 2) # 4,8,16,32,64,128
40
+ anchor = stride * 4
41
+ poss = zip(*np.where(ocls[:, 1, :, :] > 0.05))
42
+ for Iindex, hindex, windex in poss:
43
+ axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride
44
+ score = ocls[0, 1, hindex, windex]
45
+ loc = oreg[0, :, hindex, windex].contiguous().view(1, 4)
46
+ priors = torch.Tensor([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]])
47
+ variances = [0.1, 0.2]
48
+ box = decode(loc, priors, variances)
49
+ x1, y1, x2, y2 = box[0] * 1.0
50
+ # cv2.rectangle(imgshow,(int(x1),int(y1)),(int(x2),int(y2)),(0,0,255),1)
51
+ bboxlist.append([x1, y1, x2, y2, score])
52
+ bboxlist = np.array(bboxlist)
53
+ if 0 == len(bboxlist):
54
+ bboxlist = np.zeros((1, 5))
55
+
56
+ return bboxlist
57
+
58
+ def batch_detect(net, imgs, device):
59
+ imgs = imgs - np.array([104, 117, 123])
60
+ imgs = imgs.transpose(0, 3, 1, 2)
61
+
62
+ if 'cuda' in device:
63
+ torch.backends.cudnn.benchmark = True
64
+
65
+ imgs = torch.from_numpy(imgs).float().to(device)
66
+ BB, CC, HH, WW = imgs.size()
67
+ with torch.no_grad():
68
+ olist = net(imgs)
69
+
70
+ bboxlist = []
71
+ for i in range(len(olist) // 2):
72
+ olist[i * 2] = F.softmax(olist[i * 2], dim=1)
73
+ olist = [oelem.data.cpu() for oelem in olist]
74
+ for i in range(len(olist) // 2):
75
+ ocls, oreg = olist[i * 2], olist[i * 2 + 1]
76
+ FB, FC, FH, FW = ocls.size() # feature map size
77
+ stride = 2**(i + 2) # 4,8,16,32,64,128
78
+ anchor = stride * 4
79
+ poss = zip(*np.where(ocls[:, 1, :, :] > 0.05))
80
+ for Iindex, hindex, windex in poss:
81
+ axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride
82
+ score = ocls[:, 1, hindex, windex]
83
+ loc = oreg[:, :, hindex, windex].contiguous().view(BB, 1, 4)
84
+ priors = torch.Tensor([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]]).view(1, 1, 4)
85
+ variances = [0.1, 0.2]
86
+ box = batch_decode(loc, priors, variances)
87
+ box = box[:, 0] * 1.0
88
+ # cv2.rectangle(imgshow,(int(x1),int(y1)),(int(x2),int(y2)),(0,0,255),1)
89
+ bboxlist.append(torch.cat([box, score.unsqueeze(1)], 1).cpu().numpy())
90
+ bboxlist = np.array(bboxlist)
91
+ if 0 == len(bboxlist):
92
+ bboxlist = np.zeros((1, BB, 5))
93
+
94
+ return bboxlist
95
+
96
+ def flip_detect(net, img, device):
97
+ img = cv2.flip(img, 1)
98
+ b = detect(net, img, device)
99
+
100
+ bboxlist = np.zeros(b.shape)
101
+ bboxlist[:, 0] = img.shape[1] - b[:, 2]
102
+ bboxlist[:, 1] = b[:, 1]
103
+ bboxlist[:, 2] = img.shape[1] - b[:, 0]
104
+ bboxlist[:, 3] = b[:, 3]
105
+ bboxlist[:, 4] = b[:, 4]
106
+ return bboxlist
107
+
108
+
109
+ def pts_to_bb(pts):
110
+ min_x, min_y = np.min(pts, axis=0)
111
+ max_x, max_y = np.max(pts, axis=0)
112
+ return np.array([min_x, min_y, max_x, max_y])
Wav2Lip/face_detection/detection/sfd/net_s3fd.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+
6
+ class L2Norm(nn.Module):
7
+ def __init__(self, n_channels, scale=1.0):
8
+ super(L2Norm, self).__init__()
9
+ self.n_channels = n_channels
10
+ self.scale = scale
11
+ self.eps = 1e-10
12
+ self.weight = nn.Parameter(torch.Tensor(self.n_channels))
13
+ self.weight.data *= 0.0
14
+ self.weight.data += self.scale
15
+
16
+ def forward(self, x):
17
+ norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() + self.eps
18
+ x = x / norm * self.weight.view(1, -1, 1, 1)
19
+ return x
20
+
21
+
22
+ class s3fd(nn.Module):
23
+ def __init__(self):
24
+ super(s3fd, self).__init__()
25
+ self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
26
+ self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
27
+
28
+ self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
29
+ self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)
30
+
31
+ self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
32
+ self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
33
+ self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
34
+
35
+ self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
36
+ self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
37
+ self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
38
+
39
+ self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
40
+ self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
41
+ self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
42
+
43
+ self.fc6 = nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=3)
44
+ self.fc7 = nn.Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0)
45
+
46
+ self.conv6_1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0)
47
+ self.conv6_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)
48
+
49
+ self.conv7_1 = nn.Conv2d(512, 128, kernel_size=1, stride=1, padding=0)
50
+ self.conv7_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)
51
+
52
+ self.conv3_3_norm = L2Norm(256, scale=10)
53
+ self.conv4_3_norm = L2Norm(512, scale=8)
54
+ self.conv5_3_norm = L2Norm(512, scale=5)
55
+
56
+ self.conv3_3_norm_mbox_conf = nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1)
57
+ self.conv3_3_norm_mbox_loc = nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1)
58
+ self.conv4_3_norm_mbox_conf = nn.Conv2d(512, 2, kernel_size=3, stride=1, padding=1)
59
+ self.conv4_3_norm_mbox_loc = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
60
+ self.conv5_3_norm_mbox_conf = nn.Conv2d(512, 2, kernel_size=3, stride=1, padding=1)
61
+ self.conv5_3_norm_mbox_loc = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
62
+
63
+ self.fc7_mbox_conf = nn.Conv2d(1024, 2, kernel_size=3, stride=1, padding=1)
64
+ self.fc7_mbox_loc = nn.Conv2d(1024, 4, kernel_size=3, stride=1, padding=1)
65
+ self.conv6_2_mbox_conf = nn.Conv2d(512, 2, kernel_size=3, stride=1, padding=1)
66
+ self.conv6_2_mbox_loc = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
67
+ self.conv7_2_mbox_conf = nn.Conv2d(256, 2, kernel_size=3, stride=1, padding=1)
68
+ self.conv7_2_mbox_loc = nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1)
69
+
70
+ def forward(self, x):
71
+ h = F.relu(self.conv1_1(x))
72
+ h = F.relu(self.conv1_2(h))
73
+ h = F.max_pool2d(h, 2, 2)
74
+
75
+ h = F.relu(self.conv2_1(h))
76
+ h = F.relu(self.conv2_2(h))
77
+ h = F.max_pool2d(h, 2, 2)
78
+
79
+ h = F.relu(self.conv3_1(h))
80
+ h = F.relu(self.conv3_2(h))
81
+ h = F.relu(self.conv3_3(h))
82
+ f3_3 = h
83
+ h = F.max_pool2d(h, 2, 2)
84
+
85
+ h = F.relu(self.conv4_1(h))
86
+ h = F.relu(self.conv4_2(h))
87
+ h = F.relu(self.conv4_3(h))
88
+ f4_3 = h
89
+ h = F.max_pool2d(h, 2, 2)
90
+
91
+ h = F.relu(self.conv5_1(h))
92
+ h = F.relu(self.conv5_2(h))
93
+ h = F.relu(self.conv5_3(h))
94
+ f5_3 = h
95
+ h = F.max_pool2d(h, 2, 2)
96
+
97
+ h = F.relu(self.fc6(h))
98
+ h = F.relu(self.fc7(h))
99
+ ffc7 = h
100
+ h = F.relu(self.conv6_1(h))
101
+ h = F.relu(self.conv6_2(h))
102
+ f6_2 = h
103
+ h = F.relu(self.conv7_1(h))
104
+ h = F.relu(self.conv7_2(h))
105
+ f7_2 = h
106
+
107
+ f3_3 = self.conv3_3_norm(f3_3)
108
+ f4_3 = self.conv4_3_norm(f4_3)
109
+ f5_3 = self.conv5_3_norm(f5_3)
110
+
111
+ cls1 = self.conv3_3_norm_mbox_conf(f3_3)
112
+ reg1 = self.conv3_3_norm_mbox_loc(f3_3)
113
+ cls2 = self.conv4_3_norm_mbox_conf(f4_3)
114
+ reg2 = self.conv4_3_norm_mbox_loc(f4_3)
115
+ cls3 = self.conv5_3_norm_mbox_conf(f5_3)
116
+ reg3 = self.conv5_3_norm_mbox_loc(f5_3)
117
+ cls4 = self.fc7_mbox_conf(ffc7)
118
+ reg4 = self.fc7_mbox_loc(ffc7)
119
+ cls5 = self.conv6_2_mbox_conf(f6_2)
120
+ reg5 = self.conv6_2_mbox_loc(f6_2)
121
+ cls6 = self.conv7_2_mbox_conf(f7_2)
122
+ reg6 = self.conv7_2_mbox_loc(f7_2)
123
+
124
+ # max-out background label
125
+ chunk = torch.chunk(cls1, 4, 1)
126
+ bmax = torch.max(torch.max(chunk[0], chunk[1]), chunk[2])
127
+ cls1 = torch.cat([bmax, chunk[3]], dim=1)
128
+
129
+ return [cls1, reg1, cls2, reg2, cls3, reg3, cls4, reg4, cls5, reg5, cls6, reg6]
Wav2Lip/face_detection/detection/sfd/sfd_detector.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ from torch.utils.model_zoo import load_url
4
+
5
+ from ..core import FaceDetector
6
+
7
+ from .net_s3fd import s3fd
8
+ from .bbox import *
9
+ from .detect import *
10
+
11
+ models_urls = {
12
+ 's3fd': 'https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth',
13
+ }
14
+
15
+
16
+ class SFDDetector(FaceDetector):
17
+ def __init__(self, device, path_to_detector=os.path.join(os.path.dirname(os.path.abspath(__file__)), 's3fd.pth'), verbose=False):
18
+ super(SFDDetector, self).__init__(device, verbose)
19
+
20
+ # Initialise the face detector
21
+ if not os.path.isfile(path_to_detector):
22
+ model_weights = load_url(models_urls['s3fd'])
23
+ else:
24
+ model_weights = torch.load(path_to_detector)
25
+
26
+ self.face_detector = s3fd()
27
+ self.face_detector.load_state_dict(model_weights)
28
+ self.face_detector.to(device)
29
+ self.face_detector.eval()
30
+
31
+ def detect_from_image(self, tensor_or_path):
32
+ image = self.tensor_or_path_to_ndarray(tensor_or_path)
33
+
34
+ bboxlist = detect(self.face_detector, image, device=self.device)
35
+ keep = nms(bboxlist, 0.3)
36
+ bboxlist = bboxlist[keep, :]
37
+ bboxlist = [x for x in bboxlist if x[-1] > 0.5]
38
+
39
+ return bboxlist
40
+
41
+ def detect_from_batch(self, images):
42
+ bboxlists = batch_detect(self.face_detector, images, device=self.device)
43
+ keeps = [nms(bboxlists[:, i, :], 0.3) for i in range(bboxlists.shape[1])]
44
+ bboxlists = [bboxlists[keep, i, :] for i, keep in enumerate(keeps)]
45
+ bboxlists = [[x for x in bboxlist if x[-1] > 0.5] for bboxlist in bboxlists]
46
+
47
+ return bboxlists
48
+
49
+ @property
50
+ def reference_scale(self):
51
+ return 195
52
+
53
+ @property
54
+ def reference_x_shift(self):
55
+ return 0
56
+
57
+ @property
58
+ def reference_y_shift(self):
59
+ return 0
Wav2Lip/face_detection/models.py ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import math
5
+
6
+
7
+ def conv3x3(in_planes, out_planes, strd=1, padding=1, bias=False):
8
+ "3x3 convolution with padding"
9
+ return nn.Conv2d(in_planes, out_planes, kernel_size=3,
10
+ stride=strd, padding=padding, bias=bias)
11
+
12
+
13
+ class ConvBlock(nn.Module):
14
+ def __init__(self, in_planes, out_planes):
15
+ super(ConvBlock, self).__init__()
16
+ self.bn1 = nn.BatchNorm2d(in_planes)
17
+ self.conv1 = conv3x3(in_planes, int(out_planes / 2))
18
+ self.bn2 = nn.BatchNorm2d(int(out_planes / 2))
19
+ self.conv2 = conv3x3(int(out_planes / 2), int(out_planes / 4))
20
+ self.bn3 = nn.BatchNorm2d(int(out_planes / 4))
21
+ self.conv3 = conv3x3(int(out_planes / 4), int(out_planes / 4))
22
+
23
+ if in_planes != out_planes:
24
+ self.downsample = nn.Sequential(
25
+ nn.BatchNorm2d(in_planes),
26
+ nn.ReLU(True),
27
+ nn.Conv2d(in_planes, out_planes,
28
+ kernel_size=1, stride=1, bias=False),
29
+ )
30
+ else:
31
+ self.downsample = None
32
+
33
+ def forward(self, x):
34
+ residual = x
35
+
36
+ out1 = self.bn1(x)
37
+ out1 = F.relu(out1, True)
38
+ out1 = self.conv1(out1)
39
+
40
+ out2 = self.bn2(out1)
41
+ out2 = F.relu(out2, True)
42
+ out2 = self.conv2(out2)
43
+
44
+ out3 = self.bn3(out2)
45
+ out3 = F.relu(out3, True)
46
+ out3 = self.conv3(out3)
47
+
48
+ out3 = torch.cat((out1, out2, out3), 1)
49
+
50
+ if self.downsample is not None:
51
+ residual = self.downsample(residual)
52
+
53
+ out3 += residual
54
+
55
+ return out3
56
+
57
+
58
+ class Bottleneck(nn.Module):
59
+
60
+ expansion = 4
61
+
62
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
63
+ super(Bottleneck, self).__init__()
64
+ self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
65
+ self.bn1 = nn.BatchNorm2d(planes)
66
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
67
+ padding=1, bias=False)
68
+ self.bn2 = nn.BatchNorm2d(planes)
69
+ self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
70
+ self.bn3 = nn.BatchNorm2d(planes * 4)
71
+ self.relu = nn.ReLU(inplace=True)
72
+ self.downsample = downsample
73
+ self.stride = stride
74
+
75
+ def forward(self, x):
76
+ residual = x
77
+
78
+ out = self.conv1(x)
79
+ out = self.bn1(out)
80
+ out = self.relu(out)
81
+
82
+ out = self.conv2(out)
83
+ out = self.bn2(out)
84
+ out = self.relu(out)
85
+
86
+ out = self.conv3(out)
87
+ out = self.bn3(out)
88
+
89
+ if self.downsample is not None:
90
+ residual = self.downsample(x)
91
+
92
+ out += residual
93
+ out = self.relu(out)
94
+
95
+ return out
96
+
97
+
98
+ class HourGlass(nn.Module):
99
+ def __init__(self, num_modules, depth, num_features):
100
+ super(HourGlass, self).__init__()
101
+ self.num_modules = num_modules
102
+ self.depth = depth
103
+ self.features = num_features
104
+
105
+ self._generate_network(self.depth)
106
+
107
+ def _generate_network(self, level):
108
+ self.add_module('b1_' + str(level), ConvBlock(self.features, self.features))
109
+
110
+ self.add_module('b2_' + str(level), ConvBlock(self.features, self.features))
111
+
112
+ if level > 1:
113
+ self._generate_network(level - 1)
114
+ else:
115
+ self.add_module('b2_plus_' + str(level), ConvBlock(self.features, self.features))
116
+
117
+ self.add_module('b3_' + str(level), ConvBlock(self.features, self.features))
118
+
119
+ def _forward(self, level, inp):
120
+ # Upper branch
121
+ up1 = inp
122
+ up1 = self._modules['b1_' + str(level)](up1)
123
+
124
+ # Lower branch
125
+ low1 = F.avg_pool2d(inp, 2, stride=2)
126
+ low1 = self._modules['b2_' + str(level)](low1)
127
+
128
+ if level > 1:
129
+ low2 = self._forward(level - 1, low1)
130
+ else:
131
+ low2 = low1
132
+ low2 = self._modules['b2_plus_' + str(level)](low2)
133
+
134
+ low3 = low2
135
+ low3 = self._modules['b3_' + str(level)](low3)
136
+
137
+ up2 = F.interpolate(low3, scale_factor=2, mode='nearest')
138
+
139
+ return up1 + up2
140
+
141
+ def forward(self, x):
142
+ return self._forward(self.depth, x)
143
+
144
+
145
+ class FAN(nn.Module):
146
+
147
+ def __init__(self, num_modules=1):
148
+ super(FAN, self).__init__()
149
+ self.num_modules = num_modules
150
+
151
+ # Base part
152
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
153
+ self.bn1 = nn.BatchNorm2d(64)
154
+ self.conv2 = ConvBlock(64, 128)
155
+ self.conv3 = ConvBlock(128, 128)
156
+ self.conv4 = ConvBlock(128, 256)
157
+
158
+ # Stacking part
159
+ for hg_module in range(self.num_modules):
160
+ self.add_module('m' + str(hg_module), HourGlass(1, 4, 256))
161
+ self.add_module('top_m_' + str(hg_module), ConvBlock(256, 256))
162
+ self.add_module('conv_last' + str(hg_module),
163
+ nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
164
+ self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256))
165
+ self.add_module('l' + str(hg_module), nn.Conv2d(256,
166
+ 68, kernel_size=1, stride=1, padding=0))
167
+
168
+ if hg_module < self.num_modules - 1:
169
+ self.add_module(
170
+ 'bl' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
171
+ self.add_module('al' + str(hg_module), nn.Conv2d(68,
172
+ 256, kernel_size=1, stride=1, padding=0))
173
+
174
+ def forward(self, x):
175
+ x = F.relu(self.bn1(self.conv1(x)), True)
176
+ x = F.avg_pool2d(self.conv2(x), 2, stride=2)
177
+ x = self.conv3(x)
178
+ x = self.conv4(x)
179
+
180
+ previous = x
181
+
182
+ outputs = []
183
+ for i in range(self.num_modules):
184
+ hg = self._modules['m' + str(i)](previous)
185
+
186
+ ll = hg
187
+ ll = self._modules['top_m_' + str(i)](ll)
188
+
189
+ ll = F.relu(self._modules['bn_end' + str(i)]
190
+ (self._modules['conv_last' + str(i)](ll)), True)
191
+
192
+ # Predict heatmaps
193
+ tmp_out = self._modules['l' + str(i)](ll)
194
+ outputs.append(tmp_out)
195
+
196
+ if i < self.num_modules - 1:
197
+ ll = self._modules['bl' + str(i)](ll)
198
+ tmp_out_ = self._modules['al' + str(i)](tmp_out)
199
+ previous = previous + ll + tmp_out_
200
+
201
+ return outputs
202
+
203
+
204
+ class ResNetDepth(nn.Module):
205
+
206
+ def __init__(self, block=Bottleneck, layers=[3, 8, 36, 3], num_classes=68):
207
+ self.inplanes = 64
208
+ super(ResNetDepth, self).__init__()
209
+ self.conv1 = nn.Conv2d(3 + 68, 64, kernel_size=7, stride=2, padding=3,
210
+ bias=False)
211
+ self.bn1 = nn.BatchNorm2d(64)
212
+ self.relu = nn.ReLU(inplace=True)
213
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
214
+ self.layer1 = self._make_layer(block, 64, layers[0])
215
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
216
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
217
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
218
+ self.avgpool = nn.AvgPool2d(7)
219
+ self.fc = nn.Linear(512 * block.expansion, num_classes)
220
+
221
+ for m in self.modules():
222
+ if isinstance(m, nn.Conv2d):
223
+ n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
224
+ m.weight.data.normal_(0, math.sqrt(2. / n))
225
+ elif isinstance(m, nn.BatchNorm2d):
226
+ m.weight.data.fill_(1)
227
+ m.bias.data.zero_()
228
+
229
+ def _make_layer(self, block, planes, blocks, stride=1):
230
+ downsample = None
231
+ if stride != 1 or self.inplanes != planes * block.expansion:
232
+ downsample = nn.Sequential(
233
+ nn.Conv2d(self.inplanes, planes * block.expansion,
234
+ kernel_size=1, stride=stride, bias=False),
235
+ nn.BatchNorm2d(planes * block.expansion),
236
+ )
237
+
238
+ layers = []
239
+ layers.append(block(self.inplanes, planes, stride, downsample))
240
+ self.inplanes = planes * block.expansion
241
+ for i in range(1, blocks):
242
+ layers.append(block(self.inplanes, planes))
243
+
244
+ return nn.Sequential(*layers)
245
+
246
+ def forward(self, x):
247
+ x = self.conv1(x)
248
+ x = self.bn1(x)
249
+ x = self.relu(x)
250
+ x = self.maxpool(x)
251
+
252
+ x = self.layer1(x)
253
+ x = self.layer2(x)
254
+ x = self.layer3(x)
255
+ x = self.layer4(x)
256
+
257
+ x = self.avgpool(x)
258
+ x = x.view(x.size(0), -1)
259
+ x = self.fc(x)
260
+
261
+ return x
Wav2Lip/face_detection/utils.py ADDED
@@ -0,0 +1,313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import print_function
2
+ import os
3
+ import sys
4
+ import time
5
+ import torch
6
+ import math
7
+ import numpy as np
8
+ import cv2
9
+
10
+
11
+ def _gaussian(
12
+ size=3, sigma=0.25, amplitude=1, normalize=False, width=None,
13
+ height=None, sigma_horz=None, sigma_vert=None, mean_horz=0.5,
14
+ mean_vert=0.5):
15
+ # handle some defaults
16
+ if width is None:
17
+ width = size
18
+ if height is None:
19
+ height = size
20
+ if sigma_horz is None:
21
+ sigma_horz = sigma
22
+ if sigma_vert is None:
23
+ sigma_vert = sigma
24
+ center_x = mean_horz * width + 0.5
25
+ center_y = mean_vert * height + 0.5
26
+ gauss = np.empty((height, width), dtype=np.float32)
27
+ # generate kernel
28
+ for i in range(height):
29
+ for j in range(width):
30
+ gauss[i][j] = amplitude * math.exp(-(math.pow((j + 1 - center_x) / (
31
+ sigma_horz * width), 2) / 2.0 + math.pow((i + 1 - center_y) / (sigma_vert * height), 2) / 2.0))
32
+ if normalize:
33
+ gauss = gauss / np.sum(gauss)
34
+ return gauss
35
+
36
+
37
+ def draw_gaussian(image, point, sigma):
38
+ # Check if the gaussian is inside
39
+ ul = [math.floor(point[0] - 3 * sigma), math.floor(point[1] - 3 * sigma)]
40
+ br = [math.floor(point[0] + 3 * sigma), math.floor(point[1] + 3 * sigma)]
41
+ if (ul[0] > image.shape[1] or ul[1] > image.shape[0] or br[0] < 1 or br[1] < 1):
42
+ return image
43
+ size = 6 * sigma + 1
44
+ g = _gaussian(size)
45
+ g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - int(max(1, ul[0])) + int(max(1, -ul[0]))]
46
+ g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - int(max(1, ul[1])) + int(max(1, -ul[1]))]
47
+ img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))]
48
+ img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))]
49
+ assert (g_x[0] > 0 and g_y[1] > 0)
50
+ image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]
51
+ ] = image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] + g[g_y[0] - 1:g_y[1], g_x[0] - 1:g_x[1]]
52
+ image[image > 1] = 1
53
+ return image
54
+
55
+
56
+ def transform(point, center, scale, resolution, invert=False):
57
+ """Generate and affine transformation matrix.
58
+
59
+ Given a set of points, a center, a scale and a targer resolution, the
60
+ function generates and affine transformation matrix. If invert is ``True``
61
+ it will produce the inverse transformation.
62
+
63
+ Arguments:
64
+ point {torch.tensor} -- the input 2D point
65
+ center {torch.tensor or numpy.array} -- the center around which to perform the transformations
66
+ scale {float} -- the scale of the face/object
67
+ resolution {float} -- the output resolution
68
+
69
+ Keyword Arguments:
70
+ invert {bool} -- define wherever the function should produce the direct or the
71
+ inverse transformation matrix (default: {False})
72
+ """
73
+ _pt = torch.ones(3)
74
+ _pt[0] = point[0]
75
+ _pt[1] = point[1]
76
+
77
+ h = 200.0 * scale
78
+ t = torch.eye(3)
79
+ t[0, 0] = resolution / h
80
+ t[1, 1] = resolution / h
81
+ t[0, 2] = resolution * (-center[0] / h + 0.5)
82
+ t[1, 2] = resolution * (-center[1] / h + 0.5)
83
+
84
+ if invert:
85
+ t = torch.inverse(t)
86
+
87
+ new_point = (torch.matmul(t, _pt))[0:2]
88
+
89
+ return new_point.int()
90
+
91
+
92
+ def crop(image, center, scale, resolution=256.0):
93
+ """Center crops an image or set of heatmaps
94
+
95
+ Arguments:
96
+ image {numpy.array} -- an rgb image
97
+ center {numpy.array} -- the center of the object, usually the same as of the bounding box
98
+ scale {float} -- scale of the face
99
+
100
+ Keyword Arguments:
101
+ resolution {float} -- the size of the output cropped image (default: {256.0})
102
+
103
+ Returns:
104
+ [type] -- [description]
105
+ """ # Crop around the center point
106
+ """ Crops the image around the center. Input is expected to be an np.ndarray """
107
+ ul = transform([1, 1], center, scale, resolution, True)
108
+ br = transform([resolution, resolution], center, scale, resolution, True)
109
+ # pad = math.ceil(torch.norm((ul - br).float()) / 2.0 - (br[0] - ul[0]) / 2.0)
110
+ if image.ndim > 2:
111
+ newDim = np.array([br[1] - ul[1], br[0] - ul[0],
112
+ image.shape[2]], dtype=np.int32)
113
+ newImg = np.zeros(newDim, dtype=np.uint8)
114
+ else:
115
+ newDim = np.array([br[1] - ul[1], br[0] - ul[0]], dtype=np.int)
116
+ newImg = np.zeros(newDim, dtype=np.uint8)
117
+ ht = image.shape[0]
118
+ wd = image.shape[1]
119
+ newX = np.array(
120
+ [max(1, -ul[0] + 1), min(br[0], wd) - ul[0]], dtype=np.int32)
121
+ newY = np.array(
122
+ [max(1, -ul[1] + 1), min(br[1], ht) - ul[1]], dtype=np.int32)
123
+ oldX = np.array([max(1, ul[0] + 1), min(br[0], wd)], dtype=np.int32)
124
+ oldY = np.array([max(1, ul[1] + 1), min(br[1], ht)], dtype=np.int32)
125
+ newImg[newY[0] - 1:newY[1], newX[0] - 1:newX[1]
126
+ ] = image[oldY[0] - 1:oldY[1], oldX[0] - 1:oldX[1], :]
127
+ newImg = cv2.resize(newImg, dsize=(int(resolution), int(resolution)),
128
+ interpolation=cv2.INTER_LINEAR)
129
+ return newImg
130
+
131
+
132
+ def get_preds_fromhm(hm, center=None, scale=None):
133
+ """Obtain (x,y) coordinates given a set of N heatmaps. If the center
134
+ and the scale is provided the function will return the points also in
135
+ the original coordinate frame.
136
+
137
+ Arguments:
138
+ hm {torch.tensor} -- the predicted heatmaps, of shape [B, N, W, H]
139
+
140
+ Keyword Arguments:
141
+ center {torch.tensor} -- the center of the bounding box (default: {None})
142
+ scale {float} -- face scale (default: {None})
143
+ """
144
+ max, idx = torch.max(
145
+ hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2)
146
+ idx += 1
147
+ preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float()
148
+ preds[..., 0].apply_(lambda x: (x - 1) % hm.size(3) + 1)
149
+ preds[..., 1].add_(-1).div_(hm.size(2)).floor_().add_(1)
150
+
151
+ for i in range(preds.size(0)):
152
+ for j in range(preds.size(1)):
153
+ hm_ = hm[i, j, :]
154
+ pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1
155
+ if pX > 0 and pX < 63 and pY > 0 and pY < 63:
156
+ diff = torch.FloatTensor(
157
+ [hm_[pY, pX + 1] - hm_[pY, pX - 1],
158
+ hm_[pY + 1, pX] - hm_[pY - 1, pX]])
159
+ preds[i, j].add_(diff.sign_().mul_(.25))
160
+
161
+ preds.add_(-.5)
162
+
163
+ preds_orig = torch.zeros(preds.size())
164
+ if center is not None and scale is not None:
165
+ for i in range(hm.size(0)):
166
+ for j in range(hm.size(1)):
167
+ preds_orig[i, j] = transform(
168
+ preds[i, j], center, scale, hm.size(2), True)
169
+
170
+ return preds, preds_orig
171
+
172
+ def get_preds_fromhm_batch(hm, centers=None, scales=None):
173
+ """Obtain (x,y) coordinates given a set of N heatmaps. If the centers
174
+ and the scales is provided the function will return the points also in
175
+ the original coordinate frame.
176
+
177
+ Arguments:
178
+ hm {torch.tensor} -- the predicted heatmaps, of shape [B, N, W, H]
179
+
180
+ Keyword Arguments:
181
+ centers {torch.tensor} -- the centers of the bounding box (default: {None})
182
+ scales {float} -- face scales (default: {None})
183
+ """
184
+ max, idx = torch.max(
185
+ hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2)
186
+ idx += 1
187
+ preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float()
188
+ preds[..., 0].apply_(lambda x: (x - 1) % hm.size(3) + 1)
189
+ preds[..., 1].add_(-1).div_(hm.size(2)).floor_().add_(1)
190
+
191
+ for i in range(preds.size(0)):
192
+ for j in range(preds.size(1)):
193
+ hm_ = hm[i, j, :]
194
+ pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1
195
+ if pX > 0 and pX < 63 and pY > 0 and pY < 63:
196
+ diff = torch.FloatTensor(
197
+ [hm_[pY, pX + 1] - hm_[pY, pX - 1],
198
+ hm_[pY + 1, pX] - hm_[pY - 1, pX]])
199
+ preds[i, j].add_(diff.sign_().mul_(.25))
200
+
201
+ preds.add_(-.5)
202
+
203
+ preds_orig = torch.zeros(preds.size())
204
+ if centers is not None and scales is not None:
205
+ for i in range(hm.size(0)):
206
+ for j in range(hm.size(1)):
207
+ preds_orig[i, j] = transform(
208
+ preds[i, j], centers[i], scales[i], hm.size(2), True)
209
+
210
+ return preds, preds_orig
211
+
212
+ def shuffle_lr(parts, pairs=None):
213
+ """Shuffle the points left-right according to the axis of symmetry
214
+ of the object.
215
+
216
+ Arguments:
217
+ parts {torch.tensor} -- a 3D or 4D object containing the
218
+ heatmaps.
219
+
220
+ Keyword Arguments:
221
+ pairs {list of integers} -- [order of the flipped points] (default: {None})
222
+ """
223
+ if pairs is None:
224
+ pairs = [16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
225
+ 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 27, 28, 29, 30, 35,
226
+ 34, 33, 32, 31, 45, 44, 43, 42, 47, 46, 39, 38, 37, 36, 41,
227
+ 40, 54, 53, 52, 51, 50, 49, 48, 59, 58, 57, 56, 55, 64, 63,
228
+ 62, 61, 60, 67, 66, 65]
229
+ if parts.ndimension() == 3:
230
+ parts = parts[pairs, ...]
231
+ else:
232
+ parts = parts[:, pairs, ...]
233
+
234
+ return parts
235
+
236
+
237
+ def flip(tensor, is_label=False):
238
+ """Flip an image or a set of heatmaps left-right
239
+
240
+ Arguments:
241
+ tensor {numpy.array or torch.tensor} -- [the input image or heatmaps]
242
+
243
+ Keyword Arguments:
244
+ is_label {bool} -- [denote wherever the input is an image or a set of heatmaps ] (default: {False})
245
+ """
246
+ if not torch.is_tensor(tensor):
247
+ tensor = torch.from_numpy(tensor)
248
+
249
+ if is_label:
250
+ tensor = shuffle_lr(tensor).flip(tensor.ndimension() - 1)
251
+ else:
252
+ tensor = tensor.flip(tensor.ndimension() - 1)
253
+
254
+ return tensor
255
+
256
+ # From pyzolib/paths.py (https://bitbucket.org/pyzo/pyzolib/src/tip/paths.py)
257
+
258
+
259
+ def appdata_dir(appname=None, roaming=False):
260
+ """ appdata_dir(appname=None, roaming=False)
261
+
262
+ Get the path to the application directory, where applications are allowed
263
+ to write user specific files (e.g. configurations). For non-user specific
264
+ data, consider using common_appdata_dir().
265
+ If appname is given, a subdir is appended (and created if necessary).
266
+ If roaming is True, will prefer a roaming directory (Windows Vista/7).
267
+ """
268
+
269
+ # Define default user directory
270
+ userDir = os.getenv('FACEALIGNMENT_USERDIR', None)
271
+ if userDir is None:
272
+ userDir = os.path.expanduser('~')
273
+ if not os.path.isdir(userDir): # pragma: no cover
274
+ userDir = '/var/tmp' # issue #54
275
+
276
+ # Get system app data dir
277
+ path = None
278
+ if sys.platform.startswith('win'):
279
+ path1, path2 = os.getenv('LOCALAPPDATA'), os.getenv('APPDATA')
280
+ path = (path2 or path1) if roaming else (path1 or path2)
281
+ elif sys.platform.startswith('darwin'):
282
+ path = os.path.join(userDir, 'Library', 'Application Support')
283
+ # On Linux and as fallback
284
+ if not (path and os.path.isdir(path)):
285
+ path = userDir
286
+
287
+ # Maybe we should store things local to the executable (in case of a
288
+ # portable distro or a frozen application that wants to be portable)
289
+ prefix = sys.prefix
290
+ if getattr(sys, 'frozen', None):
291
+ prefix = os.path.abspath(os.path.dirname(sys.executable))
292
+ for reldir in ('settings', '../settings'):
293
+ localpath = os.path.abspath(os.path.join(prefix, reldir))
294
+ if os.path.isdir(localpath): # pragma: no cover
295
+ try:
296
+ open(os.path.join(localpath, 'test.write'), 'wb').close()
297
+ os.remove(os.path.join(localpath, 'test.write'))
298
+ except IOError:
299
+ pass # We cannot write in this directory
300
+ else:
301
+ path = localpath
302
+ break
303
+
304
+ # Get path specific for this app
305
+ if appname:
306
+ if path == userDir:
307
+ appname = '.' + appname.lstrip('.') # Make it a hidden directory
308
+ path = os.path.join(path, appname)
309
+ if not os.path.isdir(path): # pragma: no cover
310
+ os.mkdir(path)
311
+
312
+ # Done
313
+ return path
Wav2Lip/hparams.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from glob import glob
2
+ import os
3
+
4
+ def get_image_list(data_root, split):
5
+ filelist = []
6
+
7
+ with open('filelists/{}.txt'.format(split)) as f:
8
+ for line in f:
9
+ line = line.strip()
10
+ if ' ' in line: line = line.split()[0]
11
+ filelist.append(os.path.join(data_root, line))
12
+
13
+ return filelist
14
+
15
+ class HParams:
16
+ def __init__(self, **kwargs):
17
+ self.data = {}
18
+
19
+ for key, value in kwargs.items():
20
+ self.data[key] = value
21
+
22
+ def __getattr__(self, key):
23
+ if key not in self.data:
24
+ raise AttributeError("'HParams' object has no attribute %s" % key)
25
+ return self.data[key]
26
+
27
+ def set_hparam(self, key, value):
28
+ self.data[key] = value
29
+
30
+
31
+ # Default hyperparameters
32
+ hparams = HParams(
33
+ num_mels=80, # Number of mel-spectrogram channels and local conditioning dimensionality
34
+ # network
35
+ rescale=True, # Whether to rescale audio prior to preprocessing
36
+ rescaling_max=0.9, # Rescaling value
37
+
38
+ # Use LWS (https://github.com/Jonathan-LeRoux/lws) for STFT and phase reconstruction
39
+ # It"s preferred to set True to use with https://github.com/r9y9/wavenet_vocoder
40
+ # Does not work if n_ffit is not multiple of hop_size!!
41
+ use_lws=False,
42
+
43
+ n_fft=800, # Extra window size is filled with 0 paddings to match this parameter
44
+ hop_size=200, # For 16000Hz, 200 = 12.5 ms (0.0125 * sample_rate)
45
+ win_size=800, # For 16000Hz, 800 = 50 ms (If None, win_size = n_fft) (0.05 * sample_rate)
46
+ sample_rate=16000, # 16000Hz (corresponding to librispeech) (sox --i <filename>)
47
+
48
+ frame_shift_ms=None, # Can replace hop_size parameter. (Recommended: 12.5)
49
+
50
+ # Mel and Linear spectrograms normalization/scaling and clipping
51
+ signal_normalization=True,
52
+ # Whether to normalize mel spectrograms to some predefined range (following below parameters)
53
+ allow_clipping_in_normalization=True, # Only relevant if mel_normalization = True
54
+ symmetric_mels=True,
55
+ # Whether to scale the data to be symmetric around 0. (Also multiplies the output range by 2,
56
+ # faster and cleaner convergence)
57
+ max_abs_value=4.,
58
+ # max absolute value of data. If symmetric, data will be [-max, max] else [0, max] (Must not
59
+ # be too big to avoid gradient explosion,
60
+ # not too small for fast convergence)
61
+ # Contribution by @begeekmyfriend
62
+ # Spectrogram Pre-Emphasis (Lfilter: Reduce spectrogram noise and helps model certitude
63
+ # levels. Also allows for better G&L phase reconstruction)
64
+ preemphasize=True, # whether to apply filter
65
+ preemphasis=0.97, # filter coefficient.
66
+
67
+ # Limits
68
+ min_level_db=-100,
69
+ ref_level_db=20,
70
+ fmin=55,
71
+ # Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To
72
+ # test depending on dataset. Pitch info: male~[65, 260], female~[100, 525])
73
+ fmax=7600, # To be increased/reduced depending on data.
74
+
75
+ ###################### Our training parameters #################################
76
+ img_size=96,
77
+ fps=25,
78
+
79
+ batch_size=16,
80
+ initial_learning_rate=1e-4,
81
+ nepochs=200000000000000000, ### ctrl + c, stop whenever eval loss is consistently greater than train loss for ~10 epochs
82
+ num_workers=16,
83
+ checkpoint_interval=3000,
84
+ eval_interval=3000,
85
+ save_optimizer_state=True,
86
+
87
+ syncnet_wt=0.0, # is initially zero, will be set automatically to 0.03 later. Leads to faster convergence.
88
+ syncnet_batch_size=64,
89
+ syncnet_lr=1e-4,
90
+ syncnet_eval_interval=10000,
91
+ syncnet_checkpoint_interval=10000,
92
+
93
+ disc_wt=0.07,
94
+ disc_initial_learning_rate=1e-4,
95
+ )
96
+
97
+
98
+ def hparams_debug_string():
99
+ values = hparams.values()
100
+ hp = [" %s: %s" % (name, values[name]) for name in sorted(values) if name != "sentences"]
101
+ return "Hyperparameters:\n" + "\n".join(hp)
Wav2Lip/models/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .wav2lip import Wav2Lip, Wav2Lip_disc_qual
2
+ from .syncnet import SyncNet_color
Wav2Lip/models/conv.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from torch.nn import functional as F
4
+
5
+ class Conv2d(nn.Module):
6
+ def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs):
7
+ super().__init__(*args, **kwargs)
8
+ self.conv_block = nn.Sequential(
9
+ nn.Conv2d(cin, cout, kernel_size, stride, padding),
10
+ nn.BatchNorm2d(cout)
11
+ )
12
+ self.act = nn.ReLU()
13
+ self.residual = residual
14
+
15
+ def forward(self, x):
16
+ out = self.conv_block(x)
17
+ if self.residual:
18
+ out += x
19
+ return self.act(out)
20
+
21
+ class nonorm_Conv2d(nn.Module):
22
+ def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs):
23
+ super().__init__(*args, **kwargs)
24
+ self.conv_block = nn.Sequential(
25
+ nn.Conv2d(cin, cout, kernel_size, stride, padding),
26
+ )
27
+ self.act = nn.LeakyReLU(0.01, inplace=True)
28
+
29
+ def forward(self, x):
30
+ out = self.conv_block(x)
31
+ return self.act(out)
32
+
33
+ class Conv2dTranspose(nn.Module):
34
+ def __init__(self, cin, cout, kernel_size, stride, padding, output_padding=0, *args, **kwargs):
35
+ super().__init__(*args, **kwargs)
36
+ self.conv_block = nn.Sequential(
37
+ nn.ConvTranspose2d(cin, cout, kernel_size, stride, padding, output_padding),
38
+ nn.BatchNorm2d(cout)
39
+ )
40
+ self.act = nn.ReLU()
41
+
42
+ def forward(self, x):
43
+ out = self.conv_block(x)
44
+ return self.act(out)
Wav2Lip/models/syncnet.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from torch.nn import functional as F
4
+
5
+ from .conv import Conv2d
6
+
7
+ class SyncNet_color(nn.Module):
8
+ def __init__(self):
9
+ super(SyncNet_color, self).__init__()
10
+
11
+ self.face_encoder = nn.Sequential(
12
+ Conv2d(15, 32, kernel_size=(7, 7), stride=1, padding=3),
13
+
14
+ Conv2d(32, 64, kernel_size=5, stride=(1, 2), padding=1),
15
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
16
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
17
+
18
+ Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
19
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
20
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
21
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
22
+
23
+ Conv2d(128, 256, kernel_size=3, stride=2, padding=1),
24
+ Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
25
+ Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
26
+
27
+ Conv2d(256, 512, kernel_size=3, stride=2, padding=1),
28
+ Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),
29
+ Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),
30
+
31
+ Conv2d(512, 512, kernel_size=3, stride=2, padding=1),
32
+ Conv2d(512, 512, kernel_size=3, stride=1, padding=0),
33
+ Conv2d(512, 512, kernel_size=1, stride=1, padding=0),)
34
+
35
+ self.audio_encoder = nn.Sequential(
36
+ Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
37
+ Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
38
+ Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
39
+
40
+ Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
41
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
42
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
43
+
44
+ Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
45
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
46
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
47
+
48
+ Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
49
+ Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
50
+ Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
51
+
52
+ Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
53
+ Conv2d(512, 512, kernel_size=1, stride=1, padding=0),)
54
+
55
+ def forward(self, audio_sequences, face_sequences): # audio_sequences := (B, dim, T)
56
+ face_embedding = self.face_encoder(face_sequences)
57
+ audio_embedding = self.audio_encoder(audio_sequences)
58
+
59
+ audio_embedding = audio_embedding.view(audio_embedding.size(0), -1)
60
+ face_embedding = face_embedding.view(face_embedding.size(0), -1)
61
+
62
+ audio_embedding = F.normalize(audio_embedding, p=2, dim=1)
63
+ face_embedding = F.normalize(face_embedding, p=2, dim=1)
64
+
65
+
66
+ return audio_embedding, face_embedding
Wav2Lip/models/wav2lip.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from torch.nn import functional as F
4
+ import math
5
+ import streamlit as st
6
+
7
+ from .conv import Conv2dTranspose, Conv2d, nonorm_Conv2d
8
+
9
+ class Wav2Lip(nn.Module):
10
+ def __init__(self):
11
+ super(Wav2Lip, self).__init__()
12
+
13
+ self.face_encoder_blocks = nn.ModuleList([
14
+ nn.Sequential(Conv2d(6, 16, kernel_size=7, stride=1, padding=3)), # 96,96
15
+
16
+ nn.Sequential(Conv2d(16, 32, kernel_size=3, stride=2, padding=1), # 48,48
17
+ Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
18
+ Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True)),
19
+
20
+ nn.Sequential(Conv2d(32, 64, kernel_size=3, stride=2, padding=1), # 24,24
21
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
22
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
23
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True)),
24
+
25
+ nn.Sequential(Conv2d(64, 128, kernel_size=3, stride=2, padding=1), # 12,12
26
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
27
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True)),
28
+
29
+ nn.Sequential(Conv2d(128, 256, kernel_size=3, stride=2, padding=1), # 6,6
30
+ Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
31
+ Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True)),
32
+
33
+ nn.Sequential(Conv2d(256, 512, kernel_size=3, stride=2, padding=1), # 3,3
34
+ Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),),
35
+
36
+ nn.Sequential(Conv2d(512, 512, kernel_size=3, stride=1, padding=0), # 1, 1
37
+ Conv2d(512, 512, kernel_size=1, stride=1, padding=0)),])
38
+
39
+ self.audio_encoder = nn.Sequential(
40
+ Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
41
+ Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
42
+ Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
43
+
44
+ Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
45
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
46
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
47
+
48
+ Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
49
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
50
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
51
+
52
+ Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
53
+ Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
54
+
55
+ Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
56
+ Conv2d(512, 512, kernel_size=1, stride=1, padding=0)
57
+ )
58
+
59
+ self.face_decoder_blocks = nn.ModuleList([
60
+ nn.Sequential(Conv2d(512, 512, kernel_size=1, stride=1, padding=0),),
61
+
62
+ nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=1, padding=0), # 3,3
63
+ Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),),
64
+
65
+ nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=2, padding=1, output_padding=1),
66
+ Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),
67
+ Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),), # 6, 6
68
+
69
+ nn.Sequential(Conv2dTranspose(768, 384, kernel_size=3, stride=2, padding=1, output_padding=1),
70
+ Conv2d(384, 384, kernel_size=3, stride=1, padding=1, residual=True),
71
+ Conv2d(384, 384, kernel_size=3, stride=1, padding=1, residual=True),), # 12, 12
72
+
73
+ nn.Sequential(Conv2dTranspose(512, 256, kernel_size=3, stride=2, padding=1, output_padding=1),
74
+ Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
75
+ Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),), # 24, 24
76
+
77
+ nn.Sequential(Conv2dTranspose(320, 128, kernel_size=3, stride=2, padding=1, output_padding=1),
78
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
79
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),), # 48, 48
80
+
81
+ nn.Sequential(Conv2dTranspose(160, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
82
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
83
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),),]) # 96,96
84
+
85
+ self.output_block = nn.Sequential(Conv2d(80, 32, kernel_size=3, stride=1, padding=1),
86
+ nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0),
87
+ nn.Sigmoid())
88
+
89
+ def forward(self, audio_sequences, face_sequences):
90
+ # audio_sequences = (B, T, 1, 80, 16)
91
+ B = audio_sequences.size(0)
92
+
93
+ input_dim_size = len(face_sequences.size())
94
+ if input_dim_size > 4:
95
+ audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
96
+ face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)
97
+ # st.write(f"audio_sequences: {audio_sequences.shape}")
98
+ audio_embedding = self.audio_encoder(audio_sequences) # B, 512, 1, 1
99
+ audio_embedding = audio_embedding[:, :, 1, :].unsqueeze(2)
100
+ # st.write(f"audio_embedding: {audio_embedding.shape}")
101
+ # st.write(audio_embedding[0, 0, :, :])
102
+
103
+ feats = []
104
+ x = face_sequences
105
+ for f in self.face_encoder_blocks:
106
+ x = f(x)
107
+ feats.append(x)
108
+
109
+ x = audio_embedding
110
+ for f in self.face_decoder_blocks:
111
+ # st.write(x.shape)
112
+ # st.write(feats[-1].shape)
113
+ x = f(x)
114
+ # st.write(x.shape)
115
+ try:
116
+ x = torch.cat((x, feats[-1]), dim=1)
117
+ except Exception as e:
118
+ print(x.size())
119
+ print(feats[-1].size())
120
+ raise e
121
+
122
+ feats.pop()
123
+
124
+ x = self.output_block(x)
125
+
126
+ if input_dim_size > 4:
127
+ x = torch.split(x, B, dim=0) # [(B, C, H, W)]
128
+ outputs = torch.stack(x, dim=2) # (B, C, T, H, W)
129
+
130
+ else:
131
+ outputs = x
132
+
133
+ return outputs
134
+
135
+ class Wav2Lip_disc_qual(nn.Module):
136
+ def __init__(self):
137
+ super(Wav2Lip_disc_qual, self).__init__()
138
+
139
+ self.face_encoder_blocks = nn.ModuleList([
140
+ nn.Sequential(nonorm_Conv2d(3, 32, kernel_size=7, stride=1, padding=3)), # 48,96
141
+
142
+ nn.Sequential(nonorm_Conv2d(32, 64, kernel_size=5, stride=(1, 2), padding=2), # 48,48
143
+ nonorm_Conv2d(64, 64, kernel_size=5, stride=1, padding=2)),
144
+
145
+ nn.Sequential(nonorm_Conv2d(64, 128, kernel_size=5, stride=2, padding=2), # 24,24
146
+ nonorm_Conv2d(128, 128, kernel_size=5, stride=1, padding=2)),
147
+
148
+ nn.Sequential(nonorm_Conv2d(128, 256, kernel_size=5, stride=2, padding=2), # 12,12
149
+ nonorm_Conv2d(256, 256, kernel_size=5, stride=1, padding=2)),
150
+
151
+ nn.Sequential(nonorm_Conv2d(256, 512, kernel_size=3, stride=2, padding=1), # 6,6
152
+ nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=1)),
153
+
154
+ nn.Sequential(nonorm_Conv2d(512, 512, kernel_size=3, stride=2, padding=1), # 3,3
155
+ nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=1),),
156
+
157
+ nn.Sequential(nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=0), # 1, 1
158
+ nonorm_Conv2d(512, 512, kernel_size=1, stride=1, padding=0)),])
159
+
160
+ self.binary_pred = nn.Sequential(nn.Conv2d(512, 1, kernel_size=1, stride=1, padding=0), nn.Sigmoid())
161
+ self.label_noise = .0
162
+
163
+ def get_lower_half(self, face_sequences):
164
+ return face_sequences[:, :, face_sequences.size(2)//2:]
165
+
166
+ def to_2d(self, face_sequences):
167
+ B = face_sequences.size(0)
168
+ face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)
169
+ return face_sequences
170
+
171
+ def perceptual_forward(self, false_face_sequences):
172
+ false_face_sequences = self.to_2d(false_face_sequences)
173
+ false_face_sequences = self.get_lower_half(false_face_sequences)
174
+
175
+ false_feats = false_face_sequences
176
+ for f in self.face_encoder_blocks:
177
+ false_feats = f(false_feats)
178
+
179
+ false_pred_loss = F.binary_cross_entropy(self.binary_pred(false_feats).view(len(false_feats), -1),
180
+ torch.ones((len(false_feats), 1)).cuda())
181
+
182
+ return false_pred_loss
183
+
184
+ def forward(self, face_sequences):
185
+ face_sequences = self.to_2d(face_sequences)
186
+ face_sequences = self.get_lower_half(face_sequences)
187
+
188
+ x = face_sequences
189
+ for f in self.face_encoder_blocks:
190
+ x = f(x)
191
+
192
+ return self.binary_pred(x).view(len(x), -1)
Wav2Lip/video_generator.py ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ import os
3
+ import numpy as np
4
+ import cv2
5
+ from Wav2Lip import audio
6
+ import subprocess
7
+ from tqdm import tqdm
8
+ from Wav2Lip import face_detection
9
+ from Wav2Lip.models import Wav2Lip
10
+ import platform
11
+ # import tensorflow as tf
12
+ import torch
13
+ # import face_alignment
14
+ # import streamlit as st
15
+
16
+ # checkpoint_path = 'wav2lip_model/wav2lip_gan.tflite'
17
+ checkpoint_path = 'wav2lip_model/wav2lip_gan.pth'
18
+ outfile = 'generated_video.mp4'
19
+ static = False
20
+ fps = 25.
21
+ pads = [0, 10, 0, 0]
22
+ face_det_batch_size = 16
23
+ wav2lip_batch_size = 128
24
+ resize_factor = 1
25
+ crop = [0, -1, 0, -1]
26
+ box = [-1, -1, -1, -1]
27
+ rotate = False
28
+ nosmooth = False
29
+ img_size = 96
30
+ device = 'cpu'
31
+ mel_step_size = 16
32
+
33
+ def _load(checkpoint_path):
34
+ if device == 'cuda':
35
+ checkpoint = torch.load(checkpoint_path)
36
+ else:
37
+ checkpoint = torch.load(checkpoint_path,
38
+ map_location=lambda storage, loc: storage)
39
+ return checkpoint
40
+
41
+ def load_model(path):
42
+ model = Wav2Lip()
43
+ print("Load checkpoint from: {}".format(path))
44
+ checkpoint = _load(path)
45
+ s = checkpoint["state_dict"]
46
+ new_s = {}
47
+ for k, v in s.items():
48
+ new_s[k.replace('module.', '')] = v
49
+ model.load_state_dict(new_s)
50
+
51
+ model = model.to(device)
52
+ return model.eval()
53
+
54
+ def get_smoothened_boxes(boxes, T):
55
+ for i in range(len(boxes)):
56
+ if i + T > len(boxes):
57
+ window = boxes[len(boxes) - T:]
58
+ else:
59
+ window = boxes[i : i + T]
60
+ boxes[i] = np.mean(window, axis=0)
61
+ return boxes
62
+
63
+ def face_detect(images):
64
+ detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
65
+ flip_input=False, device=device)
66
+
67
+ # detector = face_detection.build_detector("DSFDDetector", confidence_threshold=.5, nms_iou_threshold=.3)
68
+ # detector = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=False, device=device)
69
+
70
+
71
+ batch_size = face_det_batch_size
72
+
73
+ while 1:
74
+ predictions = []
75
+ try:
76
+ for i in tqdm(range(0, len(images), batch_size)):
77
+ predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
78
+ # predictions.extend(detector.batched_detect(np.array(images[i:i + batch_size])))
79
+ # predictions.extend(detector.get_landmarks_from_batch(np.array(images[i:i + batch_size])))
80
+ except RuntimeError:
81
+ if batch_size == 1:
82
+ raise RuntimeError('Image too big to run face detection on GPU. Please use the --resize_factor argument')
83
+ batch_size //= 2
84
+ print('Recovering from OOM error; New batch size: {}'.format(batch_size))
85
+ continue
86
+ break
87
+
88
+ results = []
89
+ pady1, pady2, padx1, padx2 = pads
90
+ for rect, image in zip(predictions, images):
91
+ if rect is None:
92
+ cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
93
+ raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
94
+
95
+ y1 = max(0, rect[1] - pady1)
96
+ y2 = min(image.shape[0], rect[3] + pady2)
97
+ x1 = max(0, rect[0] - padx1)
98
+ x2 = min(image.shape[1], rect[2] + padx2)
99
+
100
+ results.append([x1, y1, x2, y2])
101
+
102
+ boxes = np.array(results)
103
+ if not nosmooth: boxes = get_smoothened_boxes(boxes, T=5)
104
+ results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
105
+
106
+ del detector
107
+ return results
108
+
109
+ def datagen(frames, mels):
110
+ img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
111
+
112
+ if box[0] == -1:
113
+ if not static:
114
+ face_det_results = face_detect(frames) # BGR2RGB for CNN face detection
115
+ else:
116
+ face_det_results = face_detect([frames[0]])
117
+ else:
118
+ print('Using the specified bounding box instead of face detection...')
119
+ y1, y2, x1, x2 = box
120
+ face_det_results = [[f[y1: y2, x1:x2], (y1, y2, x1, x2)] for f in frames]
121
+
122
+ for i, m in enumerate(mels):
123
+ idx = 0 if static else i%len(frames)
124
+ frame_to_save = frames[idx].copy()
125
+ face, coords = face_det_results[idx].copy()
126
+
127
+ face = cv2.resize(face, (img_size, img_size))
128
+
129
+ img_batch.append(face)
130
+ mel_batch.append(m)
131
+ frame_batch.append(frame_to_save)
132
+ coords_batch.append(coords)
133
+
134
+ if len(img_batch) >= wav2lip_batch_size:
135
+ img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
136
+
137
+ img_masked = img_batch.copy()
138
+ img_masked[:, img_size//2:] = 0
139
+
140
+ img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
141
+ mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
142
+
143
+ yield img_batch, mel_batch, frame_batch, coords_batch
144
+ img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
145
+
146
+ if len(img_batch) > 0:
147
+ img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
148
+
149
+ img_masked = img_batch.copy()
150
+ img_masked[:, img_size//2:] = 0
151
+
152
+ img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
153
+ mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
154
+
155
+ yield img_batch, mel_batch, frame_batch, coords_batch
156
+
157
+ def get_full_frames(face, fps=fps):
158
+
159
+ if not os.path.isfile(face):
160
+
161
+ raise ValueError('face argument must be a valid path to video/image file')
162
+
163
+ elif face.split('.')[1] in ['jpg', 'png', 'jpeg']:
164
+
165
+ full_frames = [cv2.imread(face)]
166
+ fps = fps
167
+
168
+ else:
169
+
170
+ video_stream = cv2.VideoCapture(face)
171
+ fps = video_stream.get(cv2.CAP_PROP_FPS)
172
+
173
+ print('Reading video frames...')
174
+
175
+ full_frames = []
176
+ while 1:
177
+ still_reading, frame = video_stream.read()
178
+ if not still_reading:
179
+ video_stream.release()
180
+ break
181
+ if resize_factor > 1:
182
+ frame = cv2.resize(frame, (frame.shape[1]//resize_factor, frame.shape[0]//resize_factor))
183
+
184
+ if rotate:
185
+ frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE)
186
+
187
+ y1, y2, x1, x2 = crop
188
+ if x2 == -1: x2 = frame.shape[1]
189
+ if y2 == -1: y2 = frame.shape[0]
190
+
191
+ frame = frame[y1:y2, x1:x2]
192
+
193
+ full_frames.append(frame)
194
+
195
+ print ("Number of frames available for inference: "+str(len(full_frames)))
196
+
197
+ return full_frames
198
+
199
+ def get_mel_chunks(voice_audio):
200
+
201
+ if not voice_audio.endswith('.wav'):
202
+ print('Extracting raw audio...')
203
+ # st.write(voice_audio)
204
+ command = 'ffmpeg -y -i {} -strict -2 {}'.format(voice_audio, 'temp/temp.wav')
205
+ subprocess.call(command, shell=True)
206
+ voice_audio = 'temp/temp.wav'
207
+
208
+ wav = audio.load_wav(voice_audio, 16000)
209
+ mel = audio.melspectrogram(wav)
210
+ print(mel.shape)
211
+
212
+ if np.isnan(mel.reshape(-1)).sum() > 0:
213
+ raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
214
+
215
+ mel_chunks = []
216
+ mel_idx_multiplier = 80./fps
217
+ i = 0
218
+ while 1:
219
+ start_idx = int(i * mel_idx_multiplier)
220
+ if start_idx + mel_step_size > len(mel[0]):
221
+ mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
222
+ break
223
+ mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
224
+ i += 1
225
+
226
+ print("Length of mel chunks: {}".format(len(mel_chunks)))
227
+
228
+ return mel_chunks
229
+
230
+ def create_video(voice_audio, face):
231
+
232
+ global static
233
+
234
+ mel_chunks = get_mel_chunks(voice_audio)
235
+ full_frames = get_full_frames(face)
236
+ full_frames = full_frames[:len(mel_chunks)]
237
+
238
+ batch_size = wav2lip_batch_size
239
+
240
+ if face and face.split('.')[1] in ['jpg', 'png', 'jpeg']:
241
+ static = True
242
+
243
+ gen = datagen(full_frames.copy(), mel_chunks)
244
+
245
+ for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen,
246
+ total=int(np.ceil(float(len(mel_chunks))/batch_size)))):
247
+ if i == 0:
248
+ model = load_model(checkpoint_path)
249
+ print ("Model loaded")
250
+
251
+ frame_h, frame_w = full_frames[0].shape[:-1]
252
+ out = cv2.VideoWriter('temp/result.avi',
253
+ cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h))
254
+
255
+ img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
256
+ mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
257
+
258
+ with torch.no_grad():
259
+ pred = model(mel_batch, img_batch)
260
+
261
+ pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
262
+
263
+ for p, f, c in zip(pred, frames, coords):
264
+ y1, y2, x1, x2 = c
265
+ p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
266
+
267
+ f[y1:y2, x1:x2] = p
268
+ out.write(f)
269
+
270
+ out.release()
271
+
272
+ command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(voice_audio, 'temp/result.avi', outfile)
273
+ subprocess.call(command, shell=platform.system() != 'Windows')