Spaces:
Running
Running
File size: 11,712 Bytes
5508eec 7e274d2 5508eec aabb1ec 5508eec 795f4f8 5508eec 7e49dfb 5508eec 137fb09 5508eec 65b8447 5508eec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import streamlit as st
import os
from glob import glob
from pathlib import Path
# from TTS.TTS.api import TTS
from TTS.utils.synthesizer import Synthesizer
from Wav2Lip.video_generator import create_video
from diffusers import StableDiffusionPipeline
from diffusers import LMSDiscreteScheduler
if not os.path.exists('temp'):
os.mkdir('temp')
gpu = False
model_path = Path(r"tts_model/model_file.pth")
config_path = Path(r"tts_model/config.json")
vocoder_path = None
vocoder_config_path = None
model_dir = None
language="en"
file_path="generated_audio.wav"
speaker = None
split_sentences = True
pipe_out = None
synthesizer = Synthesizer(
tts_checkpoint=model_path,
tts_config_path=config_path,
tts_speakers_file=None,
tts_languages_file=None,
vocoder_checkpoint=vocoder_path,
vocoder_config=vocoder_config_path,
encoder_checkpoint=None,
encoder_config=None,
model_dir=model_dir,
use_cuda=gpu,
)
# return synthesizer
# synthesizer = get_synthesizer(model_path, config_path, vocoder_path, vocoder_config_path, model_dir, gpu)
def get_audio(synthesizer, speaker, language, speaker_wav, split_sentences, text):
wav = synthesizer.tts(
text=text,
speaker_name=speaker,
language_name=language,
speaker_wav=speaker_wav,
reference_wav=None,
style_wav=None,
style_text=None,
reference_speaker_name=None,
split_sentences=split_sentences
)
synthesizer.save_wav(wav=wav, path=file_path, pipe_out=pipe_out)
# avatar_images_dir = Path('avatar_images')
avatar_images_list = os.listdir('avatar_images')
avatar_names_list = list(map(lambda x: x.split('.')[0], avatar_images_list))
n_cols_avatars = 3
n_rows_avatars = int((len(avatar_images_list) - len(avatar_images_list) % n_cols_avatars) / n_cols_avatars)
if len(avatar_images_list) % n_cols_avatars != 0:
n_rows_avatars += 1
voice_audio_list = os.listdir('voice_audios')
voice_names_list = list(map(lambda x: x.split('.')[0], voice_audio_list))
n_cols_voices = 3
n_rows_voices = int((len(voice_audio_list) - len(voice_audio_list) % n_cols_voices) / n_cols_voices)
if len(voice_audio_list) % n_cols_voices != 0:
n_rows_voices += 1
st.set_page_config(
page_title='Avatar service',
layout='wide'
)
st.markdown("<h1 style='text-align: center; color: white;'>Avatar video generation</h1>", unsafe_allow_html=True)
# st.title('Avatar video generation')
st.subheader('Step 1: Avatar Selection')
with st.expander('Available avatars'):
n_images_shown = 0
for i in range(n_rows_avatars):
avatar_cols_list = st.columns(n_cols_avatars)
for j in range(n_cols_avatars):
avatar_cols_list[j].image(
os.path.join('avatar_images', avatar_images_list[j+i*3]),
width=150,
caption=avatar_names_list[j+i*3]
)
n_images_shown += 1
if n_images_shown == len(avatar_images_list):
break
def avatar_callback():
if st.session_state.avatar_image:
st.session_state.selected_avatar = st.session_state.avatar_image
if os.path.isfile('generated_avatar.jpg'):
os.remove('generated_avatar.jpg')
# if os.path.isfile('uploaded_avatar_image.jpg'):
# os.remove('uploaded_avatar_image.jpg')
def uploaded_avatar_callback():
if st.session_state.uploaded_avatar_image is None:
pass
else:
image_path = "uploaded_avatar_image" + \
os.path.splitext(st.session_state.uploaded_avatar_image.name)[-1]
with open(image_path, "wb") as f:
f.write(st.session_state.uploaded_avatar_image.getvalue())
step1_col1, step1_col2 = st.columns(2)
with step1_col1:
selected_avatar = st.selectbox(
label='Please select an avatar',
options=avatar_names_list,
key='avatar_image',
on_change=avatar_callback
)
st.write('or')
uploaded_image = st.file_uploader(
label='Please upload an avatar',
type=['png', 'jpg', 'jpeg'],
on_change=uploaded_avatar_callback,
key='uploaded_avatar_image'
)
st.write('or')
st.text_area(
label='Please type a prompt to generate an image for the avatar',
key='image_prompt'
)
def generate_avatar():
if st.session_state.avatar_generator:
# if not os.path.exists('generated_avatars'):
# os.mkdir('generated_avatars')
pipe = StableDiffusionPipeline.from_pretrained(pretrained_model_name_or_path='diffusion_model')
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe_output = pipe(
prompt=st.session_state.image_prompt, # What to generate
negative_prompt="Oversaturated, blurry, low quality, do not show head", # What NOT to generate
height=480,
width=640, # Specify the image size
guidance_scale=13, # How strongly to follow the prompt
num_inference_steps=40, # How many steps to take
# generator=generator, # Fixed random seed
)
pipe_output.images[0].save('generated_avatar.jpg')
else:
pass
st.button(
label='generate_avatar',
key='avatar_generator',
on_click=generate_avatar
)
# st.write(st.session_state.avatar_generator)
with step1_col2:
if uploaded_image is not None:
uploaded_avatar_image_path = glob('uploaded_avatar_image.*')[0]
st.image(uploaded_avatar_image_path, width=300)
elif len(glob('generated_avatar.*')) != 0:
st.image('generated_avatar.jpg', width=300)
else:
st.image(os.path.join('avatar_images', avatar_images_list[avatar_names_list.index(selected_avatar)]), width=300)
st.subheader('Step 2: Audio Selection')
# st.markdown("<div title='Opa'>Option 1</div>", unsafe_allow_html=True)
option1_expander = st.expander('Option 1')
option1_expander.write(
'''Please select or upload an audio with a voice you want to be used in the video.
Then provide a text that will be used in the video. Afterwards click on
<Generate audio from text> button to get the audio which will be used in the video:
please, take into account that depending on the size of the text it may take some time.
'''
)
with st.expander('Available voice audio'):
n_voices_shown = 0
for i in range(n_rows_voices):
voice_cols_list = st.columns(n_cols_voices)
for j in range(n_cols_avatars):
voice_cols_list[j].audio(
os.path.join('voice_audios', voice_audio_list[j+i*3])
)
voice_cols_list[j].write(voice_names_list[j+i*3])
n_voices_shown += 1
if n_voices_shown == len(voice_audio_list):
break
def voice_callback():
if st.session_state.voice_audio:
st.session_state.selected_voice = st.session_state.voice_audio
def uploaded_voice_callback():
if st.session_state.uploaded_voice_audio is None:
pass
else:
audio_path = "uploaded_voice_audio" + \
os.path.splitext(st.session_state.uploaded_voice_audio.name)[-1]
with open(audio_path, "wb") as f:
f.write(st.session_state.uploaded_voice_audio.getvalue())
step21_col1, step21_col2 = st.columns(2)
with step21_col1:
selected_voice = st.selectbox(
label='Please select a voice to clone',
options=voice_names_list,
key='voice_audio',
on_change=voice_callback
)
st.write('or')
uploaded_voice = st.file_uploader(
"Upload a voice to clone",
type=['mp3', 'wav'],
key='uploaded_voice_audio',
on_change=uploaded_voice_callback
)
with step21_col2:
st.markdown('<br>', unsafe_allow_html=True)
if uploaded_voice is None:
st.audio(os.path.join('voice_audios', voice_audio_list[voice_names_list.index(selected_voice)]))
else:
uploaded_voice_audio_path = glob('uploaded_voice_audio.*')[0]
st.audio(uploaded_voice_audio_path)
step21txt_col1, step21txt_col2 = st.columns(2)
with step21txt_col1:
uploaded_txt = st.text_area(
label='Please input text for avatar',
key='txt4audio'
)
def generate_audio():
if st.session_state.audio_button:
if uploaded_voice is None:
speaker_wav = os.path.join('voice_audios', voice_audio_list[voice_names_list.index(selected_voice)])
else:
speaker_wav = "uploaded_voice_audio.mp3"
get_audio(
synthesizer, speaker, language,
speaker_wav, split_sentences,
text=st.session_state.txt4audio
)
with step21txt_col2:
st.markdown('<br>', unsafe_allow_html=True)
st.button(
label='Generate audio from text',
key='audio_button',
on_click=generate_audio
)
if st.session_state.audio_button:
gen_audio_col1, _ = st.columns(2)
gen_audio_col1.audio("generated_audio.wav")
# st.subheader('Step 2 - Option 2')
option1_expander = st.expander('Option 2')
option1_expander.write(
'''Please, just upload an audio that will be reproduced in the video.
'''
)
def uploaded_audio_callback():
if st.session_state.uploaded_audio is None:
pass
else:
audio_path = "uploaded_audio" + \
os.path.splitext(st.session_state.uploaded_audio.name)[-1]
with open(audio_path, "wb") as f:
f.write(st.session_state.uploaded_audio.getvalue())
step22_col1, step22_col2 = st.columns(2)
with step22_col1:
uploaded_audio = st.file_uploader(
"Please, upload an audio",
type=['mp3', 'wav'],
key='uploaded_audio',
on_change=uploaded_audio_callback
)
with step22_col2:
st.markdown('<br>', unsafe_allow_html=True)
if uploaded_audio is None:
pass
else:
st.audio(glob('uploaded_audio.*')[0])
st.subheader('Step 3')
def generate_video():
if st.session_state.video_button:
if uploaded_audio is None:
voice_audio = glob('generated_audio.*')[0]
else:
voice_audio = glob('uploaded_audio.*')[0]
# if st.session_state.audio_button:
# voice_audio = glob('generated_audio.*')[0]
# else:
# voice_audio = os.path.join('voice_audios', voice_audio_list[voice_names_list.index(selected_voice)])
if uploaded_image is not None:
face = glob('uploaded_avatar_image.*')[0]
elif len(glob('generated_avatar.*')) != 0:
face = glob('generated_avatar.*')[0]
else:
face = os.path.join('avatar_images', avatar_images_list[avatar_names_list.index(selected_avatar)])
create_video(voice_audio, face)
step3_button_col1, _, _ = st.columns([3, 4, 5])
with step3_button_col1:
st.button(
label='Generate video',
key='video_button',
on_click=generate_video
)
if st.session_state.video_button:
step3_col1, _, _ = st.columns([4, 3, 5])
with step3_col1:
st.video(
# os.path.join('avatar_videos', 'generated_video.mp4')
'generated_video.mp4'
)
# with step3_col2:
# # st.markdown('<br>', unsafe_allow_html=True)
# # with open(os.path.join('avatar_videos', 'generated_video.mp4'), 'rb') as file:
# with open('generated_video.mp4', 'rb') as file:
# st.download_button(
# label='Download generated video',
# data=file,
# file_name='avatar_video.mp4',
# mime='video/mp4'
# ) |