Track-Anything / tracker /inference /inference_core.py
watchtowerss's picture
add inpaint and example
bb879e5
from inference.memory_manager import MemoryManager
from model.network import XMem
from model.aggregate import aggregate
from tracker.util.tensor_util import pad_divide_by, unpad
class InferenceCore:
def __init__(self, network:XMem, config):
self.config = config
self.network = network
self.mem_every = config['mem_every']
self.deep_update_every = config['deep_update_every']
self.enable_long_term = config['enable_long_term']
# if deep_update_every < 0, synchronize deep update with memory frame
self.deep_update_sync = (self.deep_update_every < 0)
self.clear_memory()
self.all_labels = None
def clear_memory(self):
self.curr_ti = -1
self.last_mem_ti = 0
if not self.deep_update_sync:
self.last_deep_update_ti = -self.deep_update_every
self.memory = MemoryManager(config=self.config)
def update_config(self, config):
self.mem_every = config['mem_every']
self.deep_update_every = config['deep_update_every']
self.enable_long_term = config['enable_long_term']
# if deep_update_every < 0, synchronize deep update with memory frame
self.deep_update_sync = (self.deep_update_every < 0)
self.memory.update_config(config)
def set_all_labels(self, all_labels):
# self.all_labels = [l.item() for l in all_labels]
self.all_labels = all_labels
def step(self, image, mask=None, valid_labels=None, end=False):
# image: 3*H*W
# mask: num_objects*H*W or None
self.curr_ti += 1
image, self.pad = pad_divide_by(image, 16)
image = image.unsqueeze(0) # add the batch dimension
is_mem_frame = ((self.curr_ti-self.last_mem_ti >= self.mem_every) or (mask is not None)) and (not end)
need_segment = (self.curr_ti > 0) and ((valid_labels is None) or (len(self.all_labels) != len(valid_labels)))
is_deep_update = (
(self.deep_update_sync and is_mem_frame) or # synchronized
(not self.deep_update_sync and self.curr_ti-self.last_deep_update_ti >= self.deep_update_every) # no-sync
) and (not end)
is_normal_update = (not self.deep_update_sync or not is_deep_update) and (not end)
key, shrinkage, selection, f16, f8, f4 = self.network.encode_key(image,
need_ek=(self.enable_long_term or need_segment),
need_sk=is_mem_frame)
multi_scale_features = (f16, f8, f4)
# segment the current frame is needed
if need_segment:
memory_readout = self.memory.match_memory(key, selection).unsqueeze(0)
hidden, pred_logits_with_bg, pred_prob_with_bg = self.network.segment(multi_scale_features, memory_readout,
self.memory.get_hidden(), h_out=is_normal_update, strip_bg=False)
# remove batch dim
pred_prob_with_bg = pred_prob_with_bg[0]
pred_prob_no_bg = pred_prob_with_bg[1:]
pred_logits_with_bg = pred_logits_with_bg[0]
pred_logits_no_bg = pred_logits_with_bg[1:]
if is_normal_update:
self.memory.set_hidden(hidden)
else:
pred_prob_no_bg = pred_prob_with_bg = pred_logits_with_bg = pred_logits_no_bg = None
# use the input mask if any
if mask is not None:
mask, _ = pad_divide_by(mask, 16)
if pred_prob_no_bg is not None:
# if we have a predicted mask, we work on it
# make pred_prob_no_bg consistent with the input mask
mask_regions = (mask.sum(0) > 0.5)
pred_prob_no_bg[:, mask_regions] = 0
# shift by 1 because mask/pred_prob_no_bg do not contain background
mask = mask.type_as(pred_prob_no_bg)
if valid_labels is not None:
shift_by_one_non_labels = [i for i in range(pred_prob_no_bg.shape[0]) if (i+1) not in valid_labels]
# non-labelled objects are copied from the predicted mask
mask[shift_by_one_non_labels] = pred_prob_no_bg[shift_by_one_non_labels]
pred_prob_with_bg = aggregate(mask, dim=0)
# also create new hidden states
self.memory.create_hidden_state(len(self.all_labels), key)
# save as memory if needed
if is_mem_frame:
value, hidden = self.network.encode_value(image, f16, self.memory.get_hidden(),
pred_prob_with_bg[1:].unsqueeze(0), is_deep_update=is_deep_update)
self.memory.add_memory(key, shrinkage, value, self.all_labels,
selection=selection if self.enable_long_term else None)
self.last_mem_ti = self.curr_ti
if is_deep_update:
self.memory.set_hidden(hidden)
self.last_deep_update_ti = self.curr_ti
if pred_logits_with_bg is None:
return unpad(pred_prob_with_bg, self.pad), None
else:
return unpad(pred_prob_with_bg, self.pad), unpad(pred_logits_with_bg, self.pad)