File size: 12,984 Bytes
4d1ebf3
 
 
 
 
 
 
 
53a8438
bb879e5
4d1ebf3
508b599
23d6e96
508b599
23d6e96
 
 
4d1ebf3
23d6e96
 
 
 
 
 
 
4d1ebf3
 
 
 
 
bb879e5
4d1ebf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
508b599
 
4d1ebf3
508b599
4d1ebf3
 
508b599
 
4d1ebf3
 
 
 
 
 
 
 
508b599
 
 
 
4d1ebf3
 
 
 
 
3c7c9f9
4d1ebf3
 
 
3c7c9f9
4d1ebf3
53a8438
3c7c9f9
 
 
 
 
 
 
4d1ebf3
 
508b599
4d1ebf3
 
 
 
 
508b599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1ebf3
53a8438
4d1ebf3
 
 
 
 
508b599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1ebf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
508b599
4d1ebf3
 
 
508b599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1ebf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c7c9f9
4d1ebf3
 
 
 
 
 
508b599
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import os
import glob
from PIL import Image
import torch
import yaml
import cv2
import importlib
import numpy as np
from tqdm import tqdm
from inpainter.util.tensor_util import resize_frames, resize_masks

def read_image_from_split(videp_split_path):
    # if type:
    image = np.asarray([np.asarray(Image.open(path)) for path in videp_split_path])
    # else:
        # image = cv2.cvtColor(cv2.imread("/tmp/{}/paintedimages/{}/{:08d}.png".format(username, video_state["video_name"], index+ ".png")), cv2.COLOR_BGR2RGB)
    return image

def save_image_to_userfolder(video_state, index, image, type:bool):
    if type:
        image_path = "/tmp/{}/originimages/{}/{:08d}.png".format(video_state["user_name"], video_state["video_name"], index)
    else:
        image_path = "/tmp/{}/paintedimages/{}/{:08d}.png".format(video_state["user_name"], video_state["video_name"], index)
    cv2.imwrite(image_path, image)
    return image_path
class BaseInpainter:
    def __init__(self, E2FGVI_checkpoint, device) -> None:
        """
        E2FGVI_checkpoint: checkpoint of inpainter (version hq, with multi-resolution support)
        """
        net = importlib.import_module('inpainter.model.e2fgvi_hq')
        self.model = net.InpaintGenerator().to(device)
        self.model.load_state_dict(torch.load(E2FGVI_checkpoint, map_location=device))
        self.model.eval()
        self.device = device
        # load configurations
        with open("inpainter/config/config.yaml", 'r') as stream: 
            config = yaml.safe_load(stream) 
        self.neighbor_stride = config['neighbor_stride']
        self.num_ref = config['num_ref']
        self.step = config['step']

    # sample reference frames from the whole video
    def get_ref_index(self, f, neighbor_ids, length):
        ref_index = []
        if self.num_ref == -1:
            for i in range(0, length, self.step):
                if i not in neighbor_ids:
                    ref_index.append(i)
        else:
            start_idx = max(0, f - self.step * (self.num_ref // 2))
            end_idx = min(length, f + self.step * (self.num_ref // 2))
            for i in range(start_idx, end_idx + 1, self.step):
                if i not in neighbor_ids:
                    if len(ref_index) > self.num_ref:
                        break
                    ref_index.append(i)
        return ref_index
    
    def inpaint_efficient(self, frames, masks, num_tcb, num_tca, dilate_radius=15, ratio=1):
        """
        Perform Inpainting for video subsets
        frames: numpy array, T, H, W, 3
        masks: numpy array, T, H, W
        num_tcb: constant, number of temporal context before, frames
        num_tca: constant, number of temporal context after, frames
        dilate_radius: radius when applying dilation on masks
        ratio: down-sample ratio

        Output:
        inpainted_frames: numpy array, T, H, W, 3
        """
        assert frames.shape[:3] == masks.shape, 'different size between frames and masks'
        assert ratio > 0 and ratio <= 1, 'ratio must in (0, 1]'
        
        # --------------------
        # pre-processing
        # --------------------
        masks = masks.copy()
        masks = np.clip(masks, 0, 1)
        kernel = cv2.getStructuringElement(2, (dilate_radius, dilate_radius))
        masks = np.stack([cv2.dilate(mask, kernel) for mask in masks], 0)
        T, H, W = masks.shape
        masks = np.expand_dims(masks, axis=3)    # expand to T, H, W, 1
        # size: (w, h)
        if ratio == 1:
            size = None
            binary_masks = masks
        else:
            size = [int(W*ratio), int(H*ratio)]
            size = [si+1 if si%2>0 else si for si in size]  # only consider even values
            # shortest side should be larger than 50
            if min(size) < 50:
                ratio = 50. / min(H, W)
                size = [int(W*ratio), int(H*ratio)]
            binary_masks = resize_masks(masks, tuple(size))
            frames = resize_frames(frames, tuple(size))          # T, H, W, 3
        # frames and binary_masks are numpy arrays
        h, w = frames.shape[1:3]
        video_length = T - (num_tca + num_tcb)  # real video length
        # convert to tensor
        imgs = (torch.from_numpy(frames).permute(0, 3, 1, 2).contiguous().unsqueeze(0).float().div(255)) * 2 - 1
        masks = torch.from_numpy(binary_masks).permute(0, 3, 1, 2).contiguous().unsqueeze(0)
        imgs, masks = imgs.to(self.device), masks.to(self.device)
        comp_frames = [None] * video_length
        tcb_imgs = None
        tca_imgs = None
        tcb_masks = None
        tca_masks = None
        # --------------------
        # end of pre-processing
        # --------------------

        # separate tc frames/masks from imgs and masks
        if num_tcb > 0:
            tcb_imgs = imgs[:, :num_tcb]
            tcb_masks = masks[:, :num_tcb]
            tcb_binary = binary_masks[:num_tcb]
        if num_tca > 0:
            tca_imgs = imgs[:, -num_tca:]
            tca_masks = masks[:, -num_tca:]
            tca_binary = binary_masks[-num_tca:]
            end_idx = -num_tca
        else:
            end_idx = T

        imgs = imgs[:, num_tcb:end_idx]
        masks = masks[:, num_tcb:end_idx]
        binary_masks = binary_masks[num_tcb:end_idx]	# only neighbor area are involved
        frames = frames[num_tcb:end_idx]				# only neighbor area are involved

        for f in tqdm(range(0, video_length, self.neighbor_stride), desc='Inpainting image'):
            neighbor_ids = [
                i for i in range(max(0, f - self.neighbor_stride),
                                min(video_length, f + self.neighbor_stride + 1))
            ]
            ref_ids = self.get_ref_index(f, neighbor_ids, video_length)

            # selected_imgs = imgs[:1, neighbor_ids + ref_ids, :, :, :]
            # selected_masks = masks[:1, neighbor_ids + ref_ids, :, :, :]
            
            selected_imgs = imgs[:, neighbor_ids]
            selected_masks = masks[:, neighbor_ids]
            # pad before
            if tcb_imgs is not None:
                selected_imgs = torch.concat([selected_imgs, tcb_imgs], dim=1)
                selected_masks = torch.concat([selected_masks, tcb_masks], dim=1)
            # integrate ref frames
            selected_imgs = torch.concat([selected_imgs, imgs[:, ref_ids]], dim=1)
            selected_masks = torch.concat([selected_masks, masks[:, ref_ids]], dim=1)
            # pad after
            if tca_imgs is not None:
                selected_imgs = torch.concat([selected_imgs, tca_imgs], dim=1)
                selected_masks = torch.concat([selected_masks, tca_masks], dim=1)

            with torch.no_grad():
                masked_imgs = selected_imgs * (1 - selected_masks)
                mod_size_h = 60
                mod_size_w = 108
                h_pad = (mod_size_h - h % mod_size_h) % mod_size_h
                w_pad = (mod_size_w - w % mod_size_w) % mod_size_w
                masked_imgs = torch.cat(
                    [masked_imgs, torch.flip(masked_imgs, [3])],
                    3)[:, :, :, :h + h_pad, :]
                masked_imgs = torch.cat(
                    [masked_imgs, torch.flip(masked_imgs, [4])],
                    4)[:, :, :, :, :w + w_pad]
                pred_imgs, _ = self.model(masked_imgs, len(neighbor_ids))
                pred_imgs = pred_imgs[:, :, :h, :w]
                pred_imgs = (pred_imgs + 1) / 2
                pred_imgs = pred_imgs.cpu().permute(0, 2, 3, 1).numpy() * 255
                for i in range(len(neighbor_ids)):
                    idx = neighbor_ids[i]
                    img = pred_imgs[i].astype(np.uint8) * binary_masks[idx] + frames[idx] * (
                            1 - binary_masks[idx])
                    if comp_frames[idx] is None:
                        comp_frames[idx] = img
                    else:
                        comp_frames[idx] = comp_frames[idx].astype(
                            np.float32) * 0.5 + img.astype(np.float32) * 0.5
            torch.cuda.empty_cache()
        inpainted_frames = np.stack(comp_frames, 0)
        return inpainted_frames.astype(np.uint8)

    def inpaint(self, frames_path, masks, dilate_radius=15, ratio=1):
        """
		Perform Inpainting for video subsets
		frames: numpy array, T, H, W, 3
		masks: numpy array, T, H, W
		dilate_radius: radius when applying dilation on masks
		ratio: down-sample ratio

		Output:
		inpainted_frames: numpy array, T, H, W, 3
		"""
        # assert frames.shape[:3] == masks.shape, 'different size between frames and masks'
        assert ratio > 0 and ratio <= 1, 'ratio must in (0, 1]'
        
        # set interval
        interval = 45
        context_range = 10  # for each split, consider its temporal context [-context_range] frames and [context_range] frames
        # split frames into subsets
        video_length = len(frames_path)
        num_splits = video_length // interval
        id_splits = [[i*interval, (i+1)*interval] for i in range(num_splits)]  # id splits
        # if remaining split > interval/2, add a new split, else, append to the last split
        if video_length - id_splits[-1][-1] > interval / 2:
            id_splits.append([num_splits*interval, video_length])
        else:
            id_splits[-1][-1] = video_length

        # perform inpainting for each split
        inpainted_splits = []
        for id_split in id_splits:
            video_split_path = frames_path[id_split[0]:id_split[1]]
            video_split = read_image_from_split(video_split_path)
            mask_split = masks[id_split[0]:id_split[1]]

            # | id_before | ----- | id_split[0] | ----- | id_split[1] | ----- | id_after |
            # add temporal context 
            id_before = max(0, id_split[0] - self.step * context_range)
            try:
                tcb_frames = np.stack([np.array(Image.open(frames_path[idb])) for idb in range(id_before, id_split[0]-self.step, self.step)], 0)
                tcb_masks = np.stack([masks[idb] for idb in range(id_before, id_split[0]-self.step, self.step)], 0)
                num_tcb = len(tcb_frames)
            except:
                num_tcb = 0
            id_after = min(video_length, id_split[1] + self.step * context_range)
            try:
                tca_frames = np.stack([np.array(Image.open(frames_path[ida])) for ida in range(id_split[1]+self.step, id_after, self.step)], 0)
                tca_masks = np.stack([masks[ida] for ida in range(id_split[1]+self.step, id_after, self.step)], 0)
                num_tca = len(tca_frames)
            except:
                num_tca = 0

            # concatenate temporal context frames/masks with input frames/masks (for parallel pre-processing)
            if num_tcb > 0:
                video_split = np.concatenate([tcb_frames, video_split], 0)
                mask_split = np.concatenate([tcb_masks, mask_split], 0)
            if num_tca > 0:
                video_split = np.concatenate([video_split, tca_frames], 0)
                mask_split = np.concatenate([mask_split, tca_masks], 0)
            
            # inpaint each split
            inpainted_splits.append(self.inpaint_efficient(video_split, mask_split, num_tcb, num_tca, dilate_radius, ratio))

        inpainted_frames = np.concatenate(inpainted_splits, 0)
        return inpainted_frames.astype(np.uint8) 

if __name__ == '__main__':

    frame_path = glob.glob(os.path.join('/ssd1/gaomingqi/datasets/davis/JPEGImages/480p/parkour', '*.jpg'))
    frame_path.sort()
    mask_path = glob.glob(os.path.join('/ssd1/gaomingqi/datasets/davis/Annotations/480p/parkour', "*.png"))
    mask_path.sort()
    save_path = '/ssd1/gaomingqi/results/inpainting/parkour'

    if not os.path.exists(save_path):
        os.mkdir(save_path)

    frames = []
    masks = []
    for fid, mid in zip(frame_path, mask_path):
        frames.append(Image.open(fid).convert('RGB'))
        masks.append(Image.open(mid).convert('P'))

    frames = np.stack(frames, 0)
    masks = np.stack(masks, 0)

    # ----------------------------------------------
    # how to use
    # ----------------------------------------------
    # 1/3: set checkpoint and device
    checkpoint = '/ssd1/gaomingqi/checkpoints/E2FGVI-HQ-CVPR22.pth'
    device = 'cuda:6'
    # 2/3: initialise inpainter
    base_inpainter = BaseInpainter(checkpoint, device)
    # 3/3: inpainting (frames: numpy array, T, H, W, 3; masks: numpy array, T, H, W)
    # ratio: (0, 1], ratio for down sample, default value is 1
    inpainted_frames = base_inpainter.inpaint(frames, masks, ratio=0.01)   # numpy array, T, H, W, 3
    # ----------------------------------------------
    # end
    # ----------------------------------------------
    # save
    for ti, inpainted_frame in enumerate(inpainted_frames):
        frame = Image.fromarray(inpainted_frame).convert('RGB')
        frame.save(os.path.join(save_path, f'{ti:05d}.jpg'))