File size: 35,340 Bytes
3aa0ca8
30f09bf
aee6057
 
 
 
14a4524
aee6057
 
 
 
 
 
 
 
e1e20bc
 
 
 
 
 
 
aee6057
3aa0ca8
aee6057
 
6ca2d36
aee6057
 
 
 
 
 
cc8a350
14a4524
aee6057
 
 
 
 
 
2957f0f
aee6057
 
 
 
 
14a4524
aee6057
 
 
14a4524
aee6057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2957f0f
aee6057
 
 
 
 
 
 
 
 
14a4524
aee6057
 
 
 
 
 
 
 
 
14a4524
2957f0f
90f8b0b
9e47f1f
 
e1e20bc
9e47f1f
 
aee6057
 
 
 
ad1ffde
90f8b0b
 
e1e20bc
 
bba5f8e
e1e20bc
bba5f8e
aee6057
 
 
 
e1e20bc
 
57c5ad9
 
40e66e3
 
9e47f1f
880b641
9e47f1f
aee6057
 
880b641
9e47f1f
aee6057
9e47f1f
880b641
aee6057
 
 
 
40e66e3
 
b9361ce
818d5cb
cf877b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1e20bc
 
aee6057
e1e20bc
 
aee6057
 
 
 
5df96ea
aee6057
e1e20bc
14a4524
aee6057
 
 
 
 
 
e1e20bc
aee6057
 
 
 
 
 
14a4524
e1e20bc
aee6057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1e20bc
aee6057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1e20bc
aee6057
 
 
 
 
 
 
e1e20bc
aee6057
 
 
 
 
 
 
78aeae6
aee6057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1e20bc
aee6057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1e20bc
aee6057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a0b4d5
aee6057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a0b4d5
aee6057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a0b4d5
aee6057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a0b4d5
aee6057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd52be8
aee6057
 
 
 
 
3aa0ca8
aee6057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfde8ee
 
aee6057
 
cc8a350
aee6057
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
import gradio as gr
from PIL import Image
import qrcode
from pathlib import Path
import requests
import io
import os
from PIL import Image
import numpy as np
import cv2
from pyzxing import BarCodeReader
from PIL import ImageOps, ImageEnhance, ImageFilter
from huggingface_hub import hf_hub_download, snapshot_download
from PIL import ImageEnhance
import replicate
from dotenv import load_dotenv

# Load environment variables from .env file
load_dotenv()

USERNAME = os.getenv("USERNAME")
PASSWORD = os.getenv("PASSWORD")
REPLICATE_API_TOKEN = os.getenv("REPLICATE_API_TOKEN")

# Set the Replicate API token
os.environ["REPLICATE_API_TOKEN"] = REPLICATE_API_TOKEN

qrcode_generator = qrcode.QRCode(
    version=1,
    error_correction=qrcode.ERROR_CORRECT_H,
    box_size=10,
    border=4,
)


# Define available models
CONTROLNET_MODELS = {
    "QR Code Monster": "monster-labs/control_v1p_sd15_qrcode_monster/v2/",
    "QR Code": "DionTimmer/controlnet_qrcode-control_v1p_sd15",
    # Add more ControlNet models here
}

DIFFUSION_MODELS = {
    "GhostMix": "digiplay/GhostMixV1.2VAE",
    "Stable v1.5": "Jiali/stable-diffusion-1.5",
    # Add more diffusion models here
}

# Global variables to store loaded models
loaded_controlnet = None
loaded_pipe = None

#   def load_models_on_launch():
#    global loaded_controlnet, loaded_pipe
#    print("Loading models on launch...")
    
# Download the main repository
#    main_repo_path = snapshot_download("monster-labs/control_v1p_sd15_qrcode_monster")
    
# Construct the path to the subfolder
#    controlnet_path = os.path.join(main_repo_path, "v2")

#    loaded_controlnet = ControlNetModel.from_pretrained(
#        controlnet_path,
#        torch_dtype=torch.float16
#    ).to("mps")

#    diffusion_path = snapshot_download(DIFFUSION_MODELS["GhostMix"])
#    loaded_pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
#        diffusion_path,
#        controlnet=loaded_controlnet,
#        torch_dtype=torch.float16,
#        safety_checker=None,
#    ).to("mps")
#    print("Models loaded successfully!")

# Modify the load_models function to use global variables
#def load_models(controlnet_model, diffusion_model):
#    global loaded_controlnet, loaded_pipe
#    if loaded_controlnet is None or loaded_pipe is None:
#        load_models_on_launch()
#    return loaded_pipe

# Add new functions for image adjustments
def adjust_image(image, brightness, contrast, saturation):
    if image is None:
        return None
    
    img = Image.fromarray(image) if isinstance(image, np.ndarray) else image
    
    if brightness != 1:
        img = ImageEnhance.Brightness(img).enhance(brightness)
    if contrast != 1:
        img = ImageEnhance.Contrast(img).enhance(contrast)
    if saturation != 1:
        img = ImageEnhance.Color(img).enhance(saturation)
    
    return np.array(img)

def resize_for_condition_image(input_image: Image.Image, resolution: int):
    input_image = input_image.convert("RGB")
    W, H = input_image.size
    k = float(resolution) / min(H, W)
    H *= k
    W *= k
    H = int(round(H / 64.0)) * 64
    W = int(round(W / 64.0)) * 64
    img = input_image.resize((W, H), resample=Image.LANCZOS)
    return img


#   SAMPLER_MAP = {
#    "DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
#    "DPM++ Karras": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True),
#    "Heun": lambda config: HeunDiscreteScheduler.from_config(config),
#    "Euler": lambda config: EulerDiscreteScheduler.from_config(config),
#    "DDIM": lambda config: DDIMScheduler.from_config(config),
#    "DEIS": lambda config: DEISMultistepScheduler.from_config(config),
#}

def scan_qr_code(image):
    # Convert gradio image to PIL Image if necessary
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    
    # Convert to grayscale
    gray_image = image.convert('L')
    
    # Convert to numpy array
    np_image = np.array(gray_image)
    
    # Method 1: Using qrcode library
    try:
        qr = qrcode.QRCode()
        qr.add_data('')
        qr.decode(gray_image)
        return qr.data.decode('utf-8')
    except Exception:
        pass
    
    # Method 2: Using OpenCV
    try:
        qr_detector = cv2.QRCodeDetector()
        retval, decoded_info, points, straight_qrcode = qr_detector.detectAndDecodeMulti(np_image)
        if retval:
            return decoded_info[0]
    except Exception:
        pass
    
    # Method 3: Fallback to zxing-cpp
    try:
        reader = BarCodeReader()
        results = reader.decode(np_image)
        if results:
            return results[0].parsed
    except Exception:
        pass
    
    return None

def invert_image(image):
    if image is None:
        return None
    if isinstance(image, np.ndarray):
        return 255 - image
    elif isinstance(image, Image.Image):
        return ImageOps.invert(image.convert('RGB'))
    else:
        raise ValueError("Unsupported image type")

def invert_displayed_image(image):
    if image is None:
        return None
    inverted = invert_image(image)
    if isinstance(inverted, np.ndarray):
        return Image.fromarray(inverted)
    return inverted


#@spaces.GPU()
def inference(
    qr_code_content: str,
    prompt: str,
    negative_prompt: str,
    guidance_scale: float = 9.0,
    qr_conditioning_scale: float = 1.47,
    num_inference_steps: int = 20,
    seed: int = -1,
    image_resolution: int = 512,
    scheduler: str = "K_EULER",
    eta: float = 0.0,
    num_outputs: int = 1,
    low_threshold: int = 100,
    high_threshold: int = 200,
    guess_mode: bool = False,
    disable_safety_check: bool = False,
):
    try:
        progress = gr.Progress()
        progress(0, desc="Generating QR code...")

        # Generate QR code image
        qr = qrcode.QRCode(
            version=1,
            error_correction=qrcode.constants.ERROR_CORRECT_H,
            box_size=10,
            border=4,
        )
        qr.add_data(qr_code_content)
        qr.make(fit=True)
        qr_image = qr.make_image(fill_color="black", back_color="white")

        # Save QR code image to a temporary file
        temp_qr_path = "temp_qr.png"
        qr_image.save(temp_qr_path)

        progress(0.3, desc="Running inference...")

        # Ensure num_outputs is within the allowed range
        num_outputs = max(1, min(num_outputs, 10))

        # Ensure seed is an integer and not null
        seed = int(seed) if seed != -1 else None

        # Ensure high_threshold is at least 1
        high_threshold = max(1, int(high_threshold))

        # Prepare the input dictionary
        input_dict = {
            "prompt": prompt,
            "qr_image": open(temp_qr_path, "rb"),
            "negative_prompt": negative_prompt,
            "guidance_scale": float(guidance_scale),
            "qr_conditioning_scale": float(qr_conditioning_scale),
            "num_inference_steps": int(num_inference_steps),
            "image_resolution": int(image_resolution),
            "scheduler": scheduler,
            "eta": float(eta),
            "num_outputs": num_outputs,
            "low_threshold": int(low_threshold),
            "high_threshold": high_threshold,
            "guess_mode": guess_mode,
            "disable_safety_check": disable_safety_check,
        }

        # Only add seed to input_dict if it's not None
        if seed is not None:
            input_dict["seed"] = seed

        # Run inference using Replicate API
        output = replicate.run(
            "anotherjesse/multi-control:76d8414a702e66c84fe2e6e9c8cbdc12e53f950f255aae9ffa5caa7873b12de0",
            input=input_dict
        )

        progress(0.9, desc="Processing results...")

        # Download the generated image
        response = requests.get(output[0])
        img = Image.open(io.BytesIO(response.content))

        # Clean up temporary file
        os.remove(temp_qr_path)

        progress(1.0, desc="Done!")
        return img, seed if seed is not None else -1
    except Exception as e:
        print(f"Error in inference: {str(e)}")
        return Image.new('RGB', (512, 512), color='white'), -1



def invert_init_image_display(image):
    if image is None:
        return None
    inverted = invert_image(image)
    if isinstance(inverted, np.ndarray):
        return Image.fromarray(inverted)
    return inverted

def adjust_color_balance(image, r, g, b):
    # Convert image to RGB if it's not already
    image = image.convert('RGB')
    
    # Split the image into its RGB channels
    r_channel, g_channel, b_channel = image.split()
    
    # Adjust each channel
    r_channel = r_channel.point(lambda i: i + (i * r))
    g_channel = g_channel.point(lambda i: i + (i * g))
    b_channel = b_channel.point(lambda i: i + (i * b))
    
    # Merge the channels back
    return Image.merge('RGB', (r_channel, g_channel, b_channel))

def apply_qr_overlay(image, original_qr, overlay, opacity):
    if not overlay or original_qr is None:
        return image
    
    # Resize original QR to match the generated image
    original_qr = original_qr.resize(image.size)
    
    # Create a new image blending the generated image and the QR code
    return Image.blend(image, original_qr, opacity)

def apply_edge_enhancement(image, strength):
    if strength == 0:
        return image
    
    # Apply edge enhancement
    enhanced = image.filter(ImageFilter.EDGE_ENHANCE)
    
    # Blend the original and enhanced images based on strength
    return Image.blend(image, enhanced, strength / 5.0)


css = """
h1, h2, h3, h4, h5, h6, p, li, ul, ol, a {
    text-align: left;
}
.centered-image {
    display: block;
    margin-left: auto;
    margin-right: auto;
    max-width: 100%;
    height: auto;
}
"""

def login(username, password):
    if username == USERNAME and password == PASSWORD:
        return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(value="Login successful! You can now access the QR Code Art Generator tab.", visible=True)
    else:
        return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(value="Invalid username or password. Please try again.", visible=True)
    
# Add login elements to the Gradio interface
with gr.Blocks(theme='Hev832/Applio', css=css, fill_width=True, fill_height=True) as blocks:
    generated_images = gr.State([])

    with gr.Tab("Welcome"):
        with gr.Row():
            with gr.Column(scale=2):  
                gr.Markdown(
                    """
                    <img src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F64740cf7485a7c8e1bd51ac9%2F29sj9LyPQItG5uBOO2x3r.webp%26quot%3B alt="UGD Logo" width="250" class="centered-image">

                    # Underground Digital's QR Code Art Generator
                
                    ## Transform Your QR Codes into Brand Masterpieces
                    
                    This cutting-edge tool empowers our creative team to craft visually stunning,
                    on-brand QR codes that perfectly blend functionality with artistic expression.
                    ## How It Works:
                    
                    1. **Enter Your QR Code Content**: Start by inputting the URL or text for your QR code.
                    2. **Craft Your Prompt**: Describe the artistic style or theme you envision for your QR code.
                    3. **Fine-tune with Advanced Settings**: Adjust parameters to perfect your creation (see tips below).
                    4. **Generate and Iterate**: Click 'Run' to create your art, then refine as needed.
                    """
                )
                
            with gr.Column(scale=1):

                    with gr.Row():
                        gr.Markdown(
                            """
                            Login below using the internal<br>
                            username and password to access the full app.<br>
                            
                            Once logged in, a new tab will appear named<br>
                            "QR Code Art Generator" allowing you to access.
                            """
                        )
    
                    with gr.Row():
                        username = gr.Textbox(label="Username", placeholder="Enter your username", value="ugd")
                    with gr.Row():
                        password = gr.Textbox(label="Password", type="password", placeholder="Enter your password", value="ugd!")
                    with gr.Row():
                        login_button = gr.Button("Login", size="sm")
                    login_message = gr.Markdown(visible=False)


    with gr.Tab("QR Code Art Generator", visible=False) as app_container:
        with gr.Row():
            with gr.Column():
                qr_code_content = gr.Textbox(
                    label="QR Code Content",
                    placeholder="Enter URL or text for your QR code",
                    info="This is what your QR code will link to or display when scanned.",
                    value="https://www.go-yamamoto.com/",
                    lines=1,
                )

                prompt = gr.Textbox(
                    label="Artistic Prompt",
                    placeholder="Describe the style or theme for your QR code art (For best results, keep the prompt to 75 characters or less as seen below)",
                    value="A high-res, photo-realistic minimalist rendering of Mount Fuji as a sharp, semi-realistic silhouette on the horizon. The mountain conveys strength and motion with clean, crisp lines and natural flow. Features detailed snow textures, subtle ridge highlights, and a powerful yet serene atmosphere. Emphasizes strength with clarity and precision in texture and light.",
                    info="Describe the style or theme for your QR code art (For best results, keep the prompt to 75 characters or less as seen in the example)",
                    lines=8,
                )
                negative_prompt = gr.Textbox(
                    label="Elements to Avoid",
                    placeholder="Describe what you don't want in the image",
                    value="ugly, disfigured, low quality, blurry, nsfw, bad_pictures, poorly drawn, distorted, overexposed, flat shading, bad proportions, deformed, pixelated, messy details, lack of contrast, unrealistic textures, bad anatomy, rough edges, low resolution",
                    info="List elements or styles you want to avoid in your QR code art.",
                    lines=4,
                )

                run_btn = gr.Button("๐ŸŽจ Create Your QR Art", variant="primary")  

                with gr.Accordion(label="Needs Some Prompting Help?", open=False, visible=True):
                    gr.Markdown(
                        """
                        ## ๐ŸŒŸ Tips for Spectacular Results:
                        - Use concise details in your prompt to help the AI understand your vision.
                        - Use negative prompts to avoid unwanted elements in your image.
                        - Experiment with different ControlNet models and diffusion models to find the best combination for your prompt.
                        ## ๐ŸŽญ Prompt Ideas to Spark Your Creativity:
                        - "A serene Japanese garden with cherry blossoms and a koi pond"
                        - "A futuristic cityscape with neon lights and flying cars"
                        - "An abstract painting with swirling colors and geometric shapes"
                        - "A vintage-style travel poster featuring iconic landmarks"
                        Remember, the magic lies in the details of your prompt and the fine-tuning of your settings. 
                        Happy creating!
                        """
                    )

                with gr.Accordion("Set Custom QR Code Colors", open=False, visible=False):
                    bg_color = gr.ColorPicker(
                        label="Background Color", 
                        value="#FFFFFF",
                        info="Choose the background color for the QR code"
                    )
                    qr_color = gr.ColorPicker(
                        label="QR Code Color", 
                        value="#000000",
                        info="Choose the color for the QR code pattern"
                    )
                    invert_final_image = gr.Checkbox(
                        label="Invert Final Image", 
                        value=False,
                        info="Check this to invert the colors of the final image",
                        visible=False,
                    )
                with gr.Accordion("AI Model Selection", open=False, visible=False):
                    controlnet_model_dropdown = gr.Dropdown(
                        choices=list(CONTROLNET_MODELS.keys()),
                        value="QR Code Monster",
                        label="ControlNet Model",
                        info="Select the ControlNet model for QR code generation"
                    )
                    diffusion_model_dropdown = gr.Dropdown(
                        choices=list(DIFFUSION_MODELS.keys()),
                        value="GhostMix",
                        label="Diffusion Model",
                        info="Select the main diffusion model for image generation"
                    )
                
            
                with gr.Accordion(label="QR Code Image (Optional)", open=False, visible=False):
                    qr_code_image = gr.Image(
                        label="QR Code Image (Optional). Leave blank to automatically generate QR code",
                        type="pil",
                    )
            
            with gr.Column():
                gr.Markdown("### Your Generated QR Code Art")
                result_image = gr.Image(
                    label="Your Artistic QR Code", 
                    show_download_button=True, 
                    show_fullscreen_button=True, 
                    container=False
                )
                gr.Markdown("๐Ÿ’พ Right-click and save the image to download your QR code art. **Note:** Images are currently not stored when generated, meaning each new generation deletes the previous one. Make sure to save your images as you go.")

                scan_button = gr.Button("Verify QR Code Works", visible=False)
                scan_result = gr.Textbox(label="Validation Result of QR Code", interactive=False, visible=False)
                used_seed = gr.Number(label="Seed Used", interactive=False)

                with gr.Accordion(label="Use Your Own Image as a Reference", open=True, visible=True) as init_image_acc:
                    init_image = gr.Image(label="Reference Image", type="pil")
                    with gr.Row():
                        use_qr_code_as_init_image = gr.Checkbox(
                            label="Uncheck to use your own image for generation", 
                            value=True, 
                            interactive=True,
                            info="Allows you to use your own image for generation, otherwise a generic QR Code is created automatically as the base image"
                        )
                        reference_image_strength = gr.Slider(
                            minimum=0.0,
                            maximum=5.0,
                            step=0.05,
                            value=0.6,
                            label="Reference Image Influence",
                            info="Controls how much the reference image influences the final result (0 = ignore, 5 = copy exactly)",
                            visible=False
                        )
                        invert_init_image_button = gr.Button("Invert Init Image", size="sm", visible=False)

    with gr.Tab("Advanced Settings"):
        with gr.Accordion("Advanced Art Controls", open=True):
            with gr.Row():
                qr_conditioning_scale = gr.Slider(
                    minimum=0.0,
                    maximum=5.0,
                    step=0.01,
                    value=1.47,
                    label="QR Code Visibility",
                )
                with gr.Accordion("QR Code Visibility Explanation", open=False):
                    gr.Markdown(
                        """
                        **QR Code Visibility** controls how prominent the QR code is in the final image:
                        
                        - **Low (0.0-1.0)**: QR code blends more with the art, potentially harder to scan.
                        - **Medium (1.0-3.0)**: Balanced visibility, usually scannable while maintaining artistic quality.
                        - **High (3.0-5.0)**: QR code stands out more, easier to scan but less artistic.
                        
                        Start with 1.47 for a good balance between art and functionality.
                        """
                    )
            
            with gr.Row():
                guidance_scale = gr.Slider(
                    minimum=0.1,
                    maximum=30.0,
                    step=0.1,
                    value=9.0,
                    label="Prompt Adherence",
                )
                with gr.Accordion("Prompt Adherence Explanation", open=False):
                    gr.Markdown(
                        """
                        **Prompt Adherence** determines how closely the AI follows your prompt:
                        
                        - **Low (0.1-5.0)**: More creative freedom, may deviate from prompt.
                        - **Medium (5.0-15.0)**: Balanced between prompt and AI creativity.
                        - **High (15.0-30.0)**: Strictly follows the prompt, less creative freedom.
                        
                        A value of 9.0 provides a good balance between creativity and prompt adherence.
                        """
                    )
            
            with gr.Row():
                num_inference_steps = gr.Slider(
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=20,
                    label="Generation Steps",
                )
                with gr.Accordion("Generation Steps Explanation", open=False):
                    gr.Markdown(
                        """
                        **Generation Steps** affects the detail and quality of the generated image:
                        
                        - **Low (1-10)**: Faster generation, less detailed results.
                        - **Medium (11-30)**: Good balance between speed and quality.
                        - **High (31-100)**: More detailed results, slower generation.
                        
                        20 steps is a good starting point for most generations.
                        """
                    )
            
            with gr.Row():
                image_resolution = gr.Slider(
                    minimum=256,
                    maximum=1024,
                    step=64,
                    value=512,
                    label="Image Resolution",
                )
                with gr.Accordion("Image Resolution Explanation", open=False):
                    gr.Markdown(
                        """
                        **Image Resolution** determines the size and detail of the generated image:
                        
                        - **Low (256-384)**: Faster generation, less detailed.
                        - **Medium (512-768)**: Good balance of detail and generation time.
                        - **High (832-1024)**: More detailed, slower generation.
                        
                        512x512 is a good default for most use cases.
                        """
                    )
            
            with gr.Row():
                seed = gr.Slider(
                    minimum=-1,
                    maximum=9999999999,
                    step=1,
                    value=-1,
                    label="Generation Seed",
                )
                with gr.Accordion("Generation Seed Explanation", open=False):
                    gr.Markdown(
                        """
                        **Generation Seed** controls the randomness of the generation:
                        
                        - **-1**: Random seed each time, producing different results.
                        - **Any positive number**: Consistent results for the same inputs.
                        
                        Use -1 to explore various designs, or set a specific seed to recreate a particular result.
                        """
                    )
            
            with gr.Row():
                scheduler = gr.Dropdown(
                    choices=["DDIM", "K_EULER", "DPMSolverMultistep", "K_EULER_ANCESTRAL", "PNDM", "KLMS"],
                    value="K_EULER",
                    label="Sampling Method",
                )
                with gr.Accordion("Sampling Method Explanation", open=False):
                    gr.Markdown(
                        """
                        **Sampling Method** affects the image generation process:
                        
                        - **K_EULER**: Good balance of speed and quality.
                        - **DDIM**: Can produce sharper results but may be slower.
                        - **DPMSolverMultistep**: Often produces high-quality results.
                        - **K_EULER_ANCESTRAL**: Can introduce more variations.
                        - **PNDM**: Another quality-focused option.
                        - **KLMS**: Can produce smooth results.
                        
                        Experiment with different methods to find what works best for your specific prompts.
                        """
                    )

            with gr.Row():
                eta = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    step=0.01,
                    value=0.0,
                    label="ETA (Noise Level)",
                )
                with gr.Accordion("ETA Explanation", open=False):
                    gr.Markdown(
                        """
                        **ETA (Noise Level)** controls the amount of noise in the generation process:
                        
                        - **0.0**: No added noise, more deterministic results.
                        - **0.1-0.5**: Slight variations in output.
                        - **0.6-1.0**: More variations, potentially more creative results.
                        
                        Start with 0.0 and increase if you want more variation in your outputs.
                        """
                    )

            with gr.Row():
                low_threshold = gr.Slider(
                    minimum=1,
                    maximum=255,
                    step=1,
                    value=100,
                    label="Edge Detection Low Threshold",
                )
                high_threshold = gr.Slider(
                    minimum=1,
                    maximum=255,
                    step=1,
                    value=200,
                    label="Edge Detection High Threshold",
                )
                with gr.Accordion("Edge Detection Thresholds Explanation", open=False):
                    gr.Markdown(
                        """
                        **Edge Detection Thresholds** affect how the QR code edges are processed:
                        
                        - **Low Threshold**: Lower values detect more edges, higher values fewer.
                        - **High Threshold**: Determines which edges are strong. Higher values result in fewer strong edges.
                        
                        Default values (100, 200) work well for most QR codes. Adjust if you need more or less edge definition.
                        """
                    )

            with gr.Row():
                guess_mode = gr.Checkbox(
                    label="Guess Mode",
                    value=False,
                )
                with gr.Accordion("Guess Mode Explanation", open=False):
                    gr.Markdown(
                        """
                        **Guess Mode**, when enabled, allows the AI to interpret the input image more freely:
                        
                        - **Unchecked**: AI follows the QR code structure more strictly.
                        - **Checked**: AI has more freedom to interpret the input, potentially leading to more creative results.
                        
                        Use this if you want more artistic interpretations of your QR code.
                        """
                    )

            with gr.Row():
                disable_safety_check = gr.Checkbox(
                    label="Disable Safety Check",
                    value=False,
                )
                with gr.Accordion("Safety Check Explanation", open=False):
                    gr.Markdown(
                        """
                        **Disable Safety Check** removes content filtering from the generation process:
                        
                        - **Unchecked**: Normal content filtering applied.
                        - **Checked**: No content filtering, may produce unexpected or inappropriate results.
                        
                        Use with caution and only if necessary for your specific use case.
                        """
                    )
    with gr.Tab("Image Editing"):
        with gr.Column():
            image_selector = gr.Dropdown(label="Select Image to Edit", choices=[], interactive=True, visible=False)
            image_to_edit = gr.Image(label="Your Artistic QR Code", show_download_button=True, show_fullscreen_button=True, container=True)

            with gr.Row():
                qr_overlay = gr.Checkbox(label="Overlay Original QR Code", value=False, visible=False)
                qr_opacity = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.5, label="QR Overlay Opacity", visible=False)
                edge_enhance = gr.Slider(minimum=0.0, maximum=5.0, step=0.1, value=0.0, label="Edge Enhancement", visible=False)

            with gr.Row():
                red_balance = gr.Slider(minimum=-1.0, maximum=1.0, step=0.1, value=0.0, label="Red Balance")
                green_balance = gr.Slider(minimum=-1.0, maximum=1.0, step=0.1, value=0.0, label="Green Balance")
                blue_balance = gr.Slider(minimum=-1.0, maximum=1.0, step=0.1, value=0.0, label="Blue Balance")


            with gr.Row():
                brightness = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Brightness")
                contrast = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Contrast")
                saturation = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Saturation")
            with gr.Row():
                invert_button = gr.Button("Invert Image", size="sm")

            with gr.Row():
                edited_image = gr.Image(label="Edited QR Code", show_download_button=True, show_fullscreen_button=True, visible=False)
                scan_button = gr.Button("Verify QR Code Works", size="sm", visible=False)
                scan_result = gr.Textbox(label="Validation Result of QR Code", interactive=False, visible=False)
                
            used_seed = gr.Number(label="Seed Used", interactive=False)
            
            gr.Markdown(
                """
                ### ๐Ÿ” Analyzing Your Creation
                - Is the QR code scannable? Check with your phone camera to see if it can scan it.
                - If not scannable, use the Brightness, Contrast, and Saturation sliders to optimize the QR code for scanning.
                - Does the art style match your prompt? If not, try adjusting the 'Prompt Adherence'.
                - Want more artistic flair? Increase the 'Artistic Freedom'.
                - Need a clearer QR code? Raise the 'QR Code Visibility'.
                """
            )

    def scan_and_display(image):
        if image is None:
            return "No image to scan"
        
        scanned_text = scan_qr_code(image)
        if scanned_text:
            return f"Scanned successfully: {scanned_text}"
        else:
            return "Failed to scan QR code. Try adjusting the settings for better visibility."

    def invert_displayed_image(image):
        if image is None:
            return None
        return invert_image(image)

    scan_button.click(
        scan_and_display,
        inputs=[result_image],
        outputs=[scan_result]
    )

    invert_button.click(
        invert_displayed_image,
        inputs=[result_image],
        outputs=[result_image]
    )

    invert_init_image_button.click(
        invert_init_image_display,
        inputs=[init_image],
        outputs=[init_image]
    )

    brightness.change(
        adjust_image,
        inputs=[result_image, brightness, contrast, saturation],
        outputs=[result_image]
    )
    contrast.change(
        adjust_image,
        inputs=[result_image, brightness, contrast, saturation],
        outputs=[result_image]
    )
    saturation.change(
        adjust_image,
        inputs=[result_image, brightness, contrast, saturation],
        outputs=[result_image]
    )

    # Add logic to show/hide the reference_image_strength slider
    def update_reference_image_strength_visibility(init_image, use_qr_code_as_init_image):
        return gr.update(visible=init_image is not None and not use_qr_code_as_init_image)

    init_image.change(
        update_reference_image_strength_visibility,
        inputs=[init_image, use_qr_code_as_init_image],
        outputs=[reference_image_strength]
    )

    use_qr_code_as_init_image.change(
        update_reference_image_strength_visibility,
        inputs=[init_image, use_qr_code_as_init_image],
        outputs=[reference_image_strength]
    )

    run_btn.click(
        fn=inference,
        inputs=[
            qr_code_content,
            prompt,
            negative_prompt,
            guidance_scale,
            qr_conditioning_scale,
            num_inference_steps,
            seed,
            image_resolution,
            scheduler,
            eta,
            low_threshold,
            high_threshold,
            guess_mode,
            disable_safety_check,
        ],
        outputs=[result_image, used_seed],
        concurrency_limit=20
    )

    # Define login button click behavior
    login_button.click(
        login,
        inputs=[username, password],
        outputs=[app_container, login_message, login_button, login_message]
    )

    # Define password textbox submit behavior
    password.submit(
        login,
        inputs=[username, password],
        outputs=[app_container, login_message, login_button, login_message]
    )

# Load models on launch
#load_models_on_launch()

blocks.queue(max_size=20)
blocks.launch(share=False, show_api=False)