Spaces:
Sleeping
Sleeping
Umang-Bansal
commited on
Upload 2 files
Browse files- app.py +210 -0
- functions.py +162 -0
app.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from functions import *
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
|
6 |
+
load_dotenv()
|
7 |
+
|
8 |
+
def initialize_session_state():
|
9 |
+
if 'processing_complete' not in st.session_state:
|
10 |
+
st.session_state['processing_complete'] = False
|
11 |
+
if 'results_df' not in st.session_state:
|
12 |
+
st.session_state['results_df'] = None
|
13 |
+
if 'output_choice' not in st.session_state:
|
14 |
+
st.session_state['output_choice'] = "Download CSV"
|
15 |
+
|
16 |
+
initialize_session_state()
|
17 |
+
|
18 |
+
def main():
|
19 |
+
st.title("InfoSynth")
|
20 |
+
|
21 |
+
df = None
|
22 |
+
|
23 |
+
# File upload section
|
24 |
+
st.header("1. Upload Your Data")
|
25 |
+
data_source = st.radio("Choose a data source:", ["CSV File", "Google Sheet"])
|
26 |
+
|
27 |
+
if data_source == "CSV File":
|
28 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type=['csv'])
|
29 |
+
|
30 |
+
if uploaded_file is not None:
|
31 |
+
df = pd.read_csv(uploaded_file)
|
32 |
+
else:
|
33 |
+
st.info(
|
34 |
+
"Before proceeding, ensure your Google Sheet is shared with the service account. "
|
35 |
+
"You can find the service account email in your credentials.json file."
|
36 |
+
)
|
37 |
+
spreadsheet_id = st.text_input(
|
38 |
+
"Enter Google Spreadsheet ID",
|
39 |
+
help="You can find this in the spreadsheet URL between /d/ and /edit"
|
40 |
+
)
|
41 |
+
|
42 |
+
sheet_names = None
|
43 |
+
if spreadsheet_id:
|
44 |
+
try:
|
45 |
+
sheet_names = get_all_sheet_names(spreadsheet_id)
|
46 |
+
if not sheet_names:
|
47 |
+
st.error("No sheets found in this spreadsheet. Please check the ID and permissions.")
|
48 |
+
except ValueError as e:
|
49 |
+
st.error(f"Error accessing spreadsheet: {str(e)}")
|
50 |
+
st.info("Please check the ID and permissions.")
|
51 |
+
except Exception as e:
|
52 |
+
st.error(f"Error accessing spreadsheet: {str(e)}")
|
53 |
+
sheet_names = []
|
54 |
+
|
55 |
+
sheet_name = None
|
56 |
+
if sheet_names:
|
57 |
+
sheet_name = st.selectbox(
|
58 |
+
"Select Sheet Name",
|
59 |
+
options=sheet_names,
|
60 |
+
help="The name of the specific sheet to read from"
|
61 |
+
)
|
62 |
+
|
63 |
+
if spreadsheet_id and sheet_name:
|
64 |
+
try:
|
65 |
+
df = load_google_sheet(spreadsheet_id, sheet_name)
|
66 |
+
if df is None or df.empty:
|
67 |
+
st.error("No data found in the selected sheet.")
|
68 |
+
except Exception as e:
|
69 |
+
st.error(f"Error loading sheet data: {str(e)}")
|
70 |
+
df = None
|
71 |
+
|
72 |
+
if df is not None:
|
73 |
+
try:
|
74 |
+
# Display available columns for selection
|
75 |
+
st.header("2. Select Primary Column")
|
76 |
+
primary_column = st.selectbox(
|
77 |
+
"Choose the main column for analysis:",
|
78 |
+
options=df.columns.tolist()
|
79 |
+
)
|
80 |
+
|
81 |
+
# Show data preview
|
82 |
+
st.header("3. Data Preview")
|
83 |
+
st.write("First 5 rows of your data:")
|
84 |
+
st.dataframe(df.head())
|
85 |
+
|
86 |
+
# Add Query Template Section
|
87 |
+
st.header("4. Query Template")
|
88 |
+
st.write(f"""
|
89 |
+
Create your query template using {primary_column} as a placeholder.
|
90 |
+
Example: "What products does {primary_column} offer?"
|
91 |
+
""")
|
92 |
+
|
93 |
+
query_template = st.text_area(
|
94 |
+
"Enter your query template:",
|
95 |
+
value=f"Tell me about {{{primary_column}}}",
|
96 |
+
help=f"Use {{{primary_column}}} as a placeholder"
|
97 |
+
)
|
98 |
+
|
99 |
+
# Preview generated queries
|
100 |
+
#if st.button("Preview Generated Queries"):
|
101 |
+
# st.subheader("Generated Queries Preview")
|
102 |
+
# # Get first 5 values from the selected column
|
103 |
+
# sample_values = df[primary_column].head()
|
104 |
+
#
|
105 |
+
# # Display example queries
|
106 |
+
# for value in sample_values:
|
107 |
+
# generated_query = query_template.replace(
|
108 |
+
# f"{{{primary_column}}}", str(value)
|
109 |
+
# )
|
110 |
+
# st.write(f"- {generated_query}")
|
111 |
+
#
|
112 |
+
# # Show total number of queries that will be generated
|
113 |
+
# st.info(f"Total queries to be generated: {len(df)}")
|
114 |
+
|
115 |
+
# Add confirmation and processing section
|
116 |
+
st.header("5. Process Queries")
|
117 |
+
total_queries = len(df[primary_column])
|
118 |
+
estimated_time = total_queries * 2 # 2 second per query due to rate limiting
|
119 |
+
|
120 |
+
st.warning(f"""
|
121 |
+
⚠️ Please confirm:
|
122 |
+
- Number of queries to process: {total_queries}
|
123 |
+
- Estimated processing time: {estimated_time} seconds ({estimated_time/60:.1f} minutes)
|
124 |
+
- This will use {total_queries} API calls
|
125 |
+
""")
|
126 |
+
|
127 |
+
# Show sample of what will be processed
|
128 |
+
#st.subheader("Sample of data to be processed:")
|
129 |
+
#sample_df = df[[primary_column]].head()
|
130 |
+
#st.dataframe(sample_df)
|
131 |
+
|
132 |
+
# Process button with confirmation
|
133 |
+
if st.button("Start Processing"):
|
134 |
+
with st.spinner("Processing queries..."):
|
135 |
+
# Add a progress bar
|
136 |
+
progress_bar = st.progress(0)
|
137 |
+
|
138 |
+
results = []
|
139 |
+
llm = setup_llm()
|
140 |
+
for index, row in df.iterrows():
|
141 |
+
try:
|
142 |
+
value = row[primary_column]
|
143 |
+
|
144 |
+
# Handle empty/null values
|
145 |
+
if pd.isna(value) or str(value).strip() == '':
|
146 |
+
results.append({
|
147 |
+
'input_value': value,
|
148 |
+
'result': 'NA'
|
149 |
+
})
|
150 |
+
continue
|
151 |
+
|
152 |
+
query = query_template.replace(f"{{{primary_column}}}", str(value))
|
153 |
+
|
154 |
+
# Display current processing item
|
155 |
+
st.text(f"Processing: {value}")
|
156 |
+
|
157 |
+
# Process query
|
158 |
+
result = process_queries(pd.DataFrame([row]), primary_column, query)
|
159 |
+
output = process_with_ai(result, query, llm)
|
160 |
+
|
161 |
+
results.append({
|
162 |
+
'input_value': value,
|
163 |
+
'result': output.content
|
164 |
+
})
|
165 |
+
|
166 |
+
# Update progress
|
167 |
+
progress_bar.progress((index + 1) / total_queries)
|
168 |
+
|
169 |
+
except Exception as e:
|
170 |
+
st.error(f"Error processing {value}: {str(e)}")
|
171 |
+
continue
|
172 |
+
|
173 |
+
# Show completion and results
|
174 |
+
st.session_state['processing_complete'] = True
|
175 |
+
st.session_state['results_df'] = pd.DataFrame(results, columns=['input_value', 'result'])
|
176 |
+
|
177 |
+
# Show results and save options if processing is complete
|
178 |
+
if st.session_state['processing_complete']:
|
179 |
+
st.success(f"✅ Completed processing {len(st.session_state['results_df'])} queries!")
|
180 |
+
|
181 |
+
st.subheader("Results Preview:")
|
182 |
+
st.dataframe(st.session_state['results_df'].head())
|
183 |
+
|
184 |
+
st.header("6. Save Results")
|
185 |
+
output_choice = st.radio("Choose an output format:", ["Download CSV", "Update Google Sheet"])
|
186 |
+
|
187 |
+
if output_choice == "Download CSV":
|
188 |
+
csv = st.session_state['results_df'].to_csv(index=False)
|
189 |
+
if st.download_button(
|
190 |
+
"Download Complete Results (CSV)",
|
191 |
+
csv,
|
192 |
+
"search_results.csv",
|
193 |
+
"text/csv",
|
194 |
+
key='download-csv'
|
195 |
+
):
|
196 |
+
st.success("✅ File downloaded successfully!")
|
197 |
+
|
198 |
+
elif output_choice == "Update Google Sheet":
|
199 |
+
update_button = st.button("Confirm Update to Google Sheet")
|
200 |
+
if update_button:
|
201 |
+
try:
|
202 |
+
write_to_google_sheet(spreadsheet_id, sheet_name, st.session_state['results_df'])
|
203 |
+
st.success("✅ Results successfully added as new column!")
|
204 |
+
except Exception as e:
|
205 |
+
st.error(f"Error updating sheet: {str(e)}")
|
206 |
+
except Exception as e:
|
207 |
+
st.error(f"Error processing the file: {str(e)}")
|
208 |
+
|
209 |
+
if __name__ == "__main__":
|
210 |
+
main()
|
functions.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import time
|
4 |
+
from typing import List, Dict
|
5 |
+
from serpapi import GoogleSearch
|
6 |
+
from langchain_groq import ChatGroq
|
7 |
+
from langchain.prompts import PromptTemplate
|
8 |
+
import gspread
|
9 |
+
from google.oauth2.service_account import Credentials
|
10 |
+
import pandas as pd
|
11 |
+
import os
|
12 |
+
|
13 |
+
def get_sheet_client():
|
14 |
+
"""Helper function to create authenticated Google Sheets client"""
|
15 |
+
try:
|
16 |
+
scope = ["https://www.googleapis.com/auth/spreadsheets"]
|
17 |
+
creds = Credentials.from_service_account_file("credentials.json", scopes=scope)
|
18 |
+
client = gspread.authorize(creds)
|
19 |
+
|
20 |
+
# Get service account email for error messages
|
21 |
+
service_account_email = creds.service_account_email
|
22 |
+
st.session_state['service_account_email'] = service_account_email
|
23 |
+
|
24 |
+
return client
|
25 |
+
except FileNotFoundError:
|
26 |
+
raise ValueError(
|
27 |
+
"credentials.json file not found. Please ensure it exists in the project directory."
|
28 |
+
)
|
29 |
+
except Exception as e:
|
30 |
+
raise ValueError(f"Error setting up Google Sheets client: {str(e)}")
|
31 |
+
|
32 |
+
def get_worksheet(sheet_id: str, range_name: str = None):
|
33 |
+
"""Helper function to get worksheet with improved error handling"""
|
34 |
+
try:
|
35 |
+
client = get_sheet_client()
|
36 |
+
sheet = client.open_by_key(sheet_id)
|
37 |
+
return sheet.worksheet(range_name) if range_name else sheet
|
38 |
+
except gspread.exceptions.SpreadsheetNotFound:
|
39 |
+
service_email = st.session_state.get('service_account_email', 'the service account')
|
40 |
+
raise ValueError(
|
41 |
+
f"Spreadsheet not found. Please verify:\n"
|
42 |
+
f"1. The spreadsheet ID is correct\n"
|
43 |
+
f"2. The sheet is shared with {service_email}\n"
|
44 |
+
f"3. Sharing permissions allow edit access"
|
45 |
+
)
|
46 |
+
except gspread.exceptions.WorksheetNotFound:
|
47 |
+
raise ValueError(f"Worksheet '{range_name}' not found in the spreadsheet")
|
48 |
+
except gspread.exceptions.APIError as e:
|
49 |
+
if 'PERMISSION_DENIED' in str(e):
|
50 |
+
service_email = st.session_state.get('service_account_email', 'the service account')
|
51 |
+
raise ValueError(
|
52 |
+
f"Permission denied. Please share the spreadsheet with {service_email} "
|
53 |
+
f"and ensure it has edit access."
|
54 |
+
)
|
55 |
+
raise ValueError(f"Google Sheets API error: {str(e)}")
|
56 |
+
|
57 |
+
def process_queries(df: pd.DataFrame, primary_column: str, query_template: str) -> List[Dict]:
|
58 |
+
results = []
|
59 |
+
|
60 |
+
serpapi_key = os.getenv("SERPAPI_API_KEY")
|
61 |
+
for index, row in df.iterrows():
|
62 |
+
try:
|
63 |
+
value = row[primary_column]
|
64 |
+
query = query_template.replace(f"{{{primary_column}}}", str(value))
|
65 |
+
|
66 |
+
# Perform search
|
67 |
+
search = GoogleSearch({
|
68 |
+
"q": query,
|
69 |
+
"gl": "in",
|
70 |
+
"api_key": serpapi_key,
|
71 |
+
"num": 5
|
72 |
+
})
|
73 |
+
search_results = search.get_dict()
|
74 |
+
|
75 |
+
# Store results
|
76 |
+
results.append({
|
77 |
+
primary_column: value,
|
78 |
+
"query": query,
|
79 |
+
"search_results": search_results.get("organic_results", [])
|
80 |
+
})
|
81 |
+
|
82 |
+
# Rate limiting
|
83 |
+
time.sleep(1)
|
84 |
+
|
85 |
+
|
86 |
+
if index % 10 == 0:
|
87 |
+
st.write(f"Processed {index + 1} queries...")
|
88 |
+
|
89 |
+
except Exception as e:
|
90 |
+
st.warning(f"Error processing query for {value}: {str(e)}")
|
91 |
+
continue
|
92 |
+
|
93 |
+
return results
|
94 |
+
|
95 |
+
def setup_llm():
|
96 |
+
"""Setup LangChain with Groq"""
|
97 |
+
api_key=os.getenv("GROQ_API_KEY")
|
98 |
+
llm = ChatGroq(
|
99 |
+
api_key=api_key,
|
100 |
+
model="llama-3.1-8b-instant",
|
101 |
+
temperature=0,
|
102 |
+
max_tokens=None,
|
103 |
+
timeout=None,
|
104 |
+
max_retries=2,
|
105 |
+
)
|
106 |
+
return llm
|
107 |
+
|
108 |
+
def process_with_ai(search_results: dict, query: str, llm) -> str:
|
109 |
+
template = """
|
110 |
+
Extract ONLY the specific information requested from the search results for: {query}
|
111 |
+
|
112 |
+
Search Results:
|
113 |
+
{search_results}
|
114 |
+
|
115 |
+
Provide ONLY the extracted information as a simple text response.
|
116 |
+
If multiple items exist, separate them with semicolons.
|
117 |
+
If no relevant information is found, respond with "Not found".
|
118 |
+
|
119 |
+
For example:
|
120 |
+
- If asked for locations: "Bengaluru; Mumbai; Delhi"
|
121 |
+
- If asked for email: "[email protected]"
|
122 |
+
- If asked for address: "123 Main Street, City, Country"
|
123 |
+
"""
|
124 |
+
|
125 |
+
prompt = PromptTemplate(
|
126 |
+
input_variables=["query", "search_results"],
|
127 |
+
template=template
|
128 |
+
)
|
129 |
+
|
130 |
+
chain = prompt | llm
|
131 |
+
response = chain.invoke({"query": query, "search_results": search_results})
|
132 |
+
|
133 |
+
return response
|
134 |
+
|
135 |
+
|
136 |
+
def load_google_sheet(sheet_id: str, range_name: str) -> pd.DataFrame:
|
137 |
+
worksheet = get_worksheet(sheet_id,range_name)
|
138 |
+
data = worksheet.get_all_records()
|
139 |
+
return pd.DataFrame(data)
|
140 |
+
|
141 |
+
|
142 |
+
def write_to_google_sheet(sheet_id: str, range_name: str, results_df: pd.DataFrame):
|
143 |
+
|
144 |
+
worksheet = get_worksheet(sheet_id, range_name)
|
145 |
+
|
146 |
+
all_values = worksheet.get_all_values()
|
147 |
+
num_rows = len(all_values)
|
148 |
+
next_col_num = len(all_values[0]) + 1
|
149 |
+
next_col_letter = chr(64 + next_col_num)
|
150 |
+
|
151 |
+
range = f'{next_col_letter}1:{next_col_letter}{num_rows}'
|
152 |
+
|
153 |
+
values = [['AI Results']] + [[str(result)] for result in results_df['result']]
|
154 |
+
|
155 |
+
worksheet.update(values, f'{range}')
|
156 |
+
|
157 |
+
|
158 |
+
def get_all_sheet_names(sheet_id: str) -> List[str]:
|
159 |
+
|
160 |
+
worksheet = get_worksheet(sheet_id)
|
161 |
+
sheets = map(lambda x: x.title, worksheet.worksheets())
|
162 |
+
return list(sheets)
|